Advertisement

Physical Mesomechanics

, Volume 21, Issue 6, pp 498–507 | Cite as

Stress-Strain State in a Buckled Thermal Barrier Coating on an Elastic Substrate

  • P. A. LyukshinEmail author
  • B. A. Lyukshin
  • N. Yu. Matolygina
  • S. V. Panin
Article
  • 6 Downloads

Abstract

The paper analyzes the stress-strain state of a thermal barrier coating buckled on an elastic substrate under thermal shock. For the analysis, the stability loss of an orthotropic plate on an elastic substrate (Winkler foundation) is modeled using the Euler method on the assumption that compressive stresses arise in the plate as it expands on heating while the substrate remains cold and dimensionally stable. The deflection amplitude and stresses in the heated plate are determined, and the stress-strain state in the substrate is estimated by solving a plane elastic problem with displacement boundary conditions. The data suggest that both compressive and tensile stresses arise at the coating-substrate interface since the coating becomes unstable and that extrusion and intrusion zones appear in the substrate, showing their chessboard distribution in the plane strain case.

Keywords

thermal barrier coatings stability loss thermal shock 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bowden, N., Brittain, S., Evans, A.G., Hutchinson, J.W., and Whitesides, G.M., Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer, Nature, 1998, vol. 393, pp. 146–149.ADSCrossRefGoogle Scholar
  2. 2.
    Panin, V.E., Moiseenko, D.D., Maksimov, P.V., and Panin, A.V., Physical Mesomechanics of a Deformed Solid as a Multilevel System. III. Inelastic Precursor of Plastic Shear Generation, Phys. Mesomech., 2007, vol. 10, no. 1–2, pp. 15–24.Google Scholar
  3. 3.
    Audoly, B. and Boudaoud, A., Buckling of a Stiff Film Bound to a Compliant Substrate. Part I: Formulation, Linear Stability of Cylindrical Patterns, Secondary Bifurcations, J. Mech. Phys. Solids, 2008, vol. 56, pp. 2401–2421.ADSzbMATHGoogle Scholar
  4. 4.
    Cai, S., Breid, D., Crosby, A.J., Suo, Z., and Hutchinson, J.W., Periodic Patterns and Energy States of Buckled Films on Compliant Substrates, J. Mech. Phys. Solids, 2011, vol. 59, pp. 1094–1114.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Yin, J., Yague, J.L., Eggenspieler, D., Gleason, K.K., and Boyce, M.C., Deterministic Order in Surface Micro–topologies through Sequential Wrinkling, Adv. Mater., 2012, vol. 24, pp. 5441–5446.CrossRefGoogle Scholar
  6. 6.
    Lin, P.–C. and Yang, S., Spontaneous Formation of One–Dimensional Ripples in Transit to Highly Ordered Two–Dimensional Herringbone Structures through Sequential and Unequal Biaxial Mechanical Stretching, Appl. Phys. Lett., 2007, vol. 90, p. 241903.ADSCrossRefGoogle Scholar
  7. 7.
    Jin, L., Takei, A., and Hutchinson, J.W., Mechanics of Wrinkle/Ridge Transitions in Thin Film/Substrate Systems, J. Mech. Phys. Solids, 2015, vol. 81, pp. 22–40ADSCrossRefGoogle Scholar
  8. 8.
    Faulhaber, S., Mercer, C., Moon, M.–W., Hutchinson, J.W., and Evans, A.G., Buckling Delamination in Compressed Multilayers on Curved Substrates with Accompanying Ridge Cracks, J. Mech. Phys. Solids, 2006, vol. 54, pp. 1004–1028.ADSCrossRefzbMATHGoogle Scholar
  9. 9.
    Freund, L.B. and Suresh, S., Thin Film Materials: Stress, Defect Formation and Surface Evolution, Cambridge: Cambridge University Press, 2004.CrossRefzbMATHGoogle Scholar
  10. 10.
    Hutchinson, J.W. and Suo, Z., Mixed Mode Cracking in Layered Materials, A v. Appl. Mech., 1992, vol. 29, pp. 63–191.CrossRefzbMATHGoogle Scholar
  11. 11.
    Hutchinson, J.W., Delamination of Compressed Films on Curved Substrates, J. Mech. Phys. Solids, 2001, vol. 50, pp. 1847–1864.ADSCrossRefzbMATHGoogle Scholar
  12. 12.
    Moon, M.–W., Jensen, H.M., Oh, K.H., Hutchinson, J.W., and Evans, A.G., The Characterization of Telephone Cord Buckling of Compressed Thin Films on Substrates, J. Mech. Phys. Solids. B, 2002, vol. 50, pp. 2355–2377.ADSCrossRefGoogle Scholar
  13. 13.
    Lee, A., Clemens, B.M., and Nix, W.D., Stress Induced Delamination Methods for the Study of Adhesion of Pt Thin Films to Si, Acta Mater., 2004, vol. 52, pp. 2081–2093.CrossRefGoogle Scholar
  14. 14.
    Thouless, M.D., Combined Buckling and Cracking of Films, J. Am. Ceram. Soc., 1993, vol. 76, pp. 2936–2938.CrossRefGoogle Scholar
  15. 15.
    Moon, M.–W., Lee, K.–R., Oh, K.H., and Hutchinson, J.W., Buckle Delamination on Patterned Substrates, Acta Mater., 2004, vol. 52, pp. 3151–3159.CrossRefGoogle Scholar
  16. 16.
    Waters, P. and Volinsky, A.A., Stress and Moisture Effects on Thin Film Buckling Delamination, Exp. Mech., 2007, vol. 47, pp. 163–170.CrossRefGoogle Scholar
  17. 17.
    Cai, S., Breid, D., Crosby, A.J., Suo, Z., and Hutchinson, J.W., Periodic Patterns and Energy States of Buckled Films on Compliant Substrates, J. Mech. Phys. Solids, 2011, vol. 59, pp. 1094–1114.ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hutchinson, J.W., Delamination of Compressed Films on Curved Substrates, J. Mech. Phys. Solids, 2001, vol. 49, pp. 1847–1864.ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    Sundaram, S., Lipkin, D.M., Johnson, C.A., and Hutchinson, J.W., The Influence of Transient Thermal Gradients and Substrate Constraint on Delamination of Thermal Barrier Coatings, J. Appl. Mech., 2013, vol. 80, pp. 011002–1–13.CrossRefGoogle Scholar
  20. 20.
    Evans, A.G. and Hutchinson, J.W., The Mechanics of Coating Delamination in Thermal Gradients, Surf. Coat. Technol., 2007, vol. 201, pp. 7905–7916.CrossRefGoogle Scholar
  21. 21.
    Balint, D.S. and Hutchinson, J.W., Undulation Instability of a Compressed Elastic Film on a Nonlinear Creeping Substrate, Acta Mater., 2003, vol. 51, pp. 3965–3983.CrossRefGoogle Scholar
  22. 22.
    Evans, A.G., Hutchinson, J.W., and He, M.Y., Micromechanics Model for the Detachment of Residually Compressed Brittle Films and Coatings, Acta Mater., 1999, vol. 47, no. 5, pp. 1513–1522.CrossRefGoogle Scholar
  23. 23.
    Sergo, V. and Clarke, D.R., Observation of Subcritical Spall Propagation of a Thermal Barrier Coating, J. Am. Ceram. Soc., 1998, vol. 81(12), pp. 3237–3242.CrossRefGoogle Scholar
  24. 24.
    Karlsson, A.M. and Evans, A.G., A Numerical Model for the Cyclic Instability of Thermally Grown Oxides in Thermal Barrier Systems, Acta Mater., 2001, vol. 49(10), pp. 1793–1804.CrossRefGoogle Scholar
  25. 25.
    Tolpygo, V.K. and Clarke, D.R., On the Rumpling Mechanism in Nickel–Aluminide Coatings. Part I: An Experimental Assessment, Acta Mater., 2004, vol. 52, pp. 5115–5127.Google Scholar
  26. 26.
    Karlsson, A.M., Hutchinson, J.W., and Evans, A.G., The Displacement of the Thermally Grown Oxide in Thermal Barrier Systems upon Temperature Cycling, Mater. Sci. Eng. A, 2003, vol. 351, pp. 244–257.CrossRefGoogle Scholar
  27. 27.
    He, M.Y., Hutchinson, J.W., and Evans, A.G., Simulation of Stresses and Delamination in a Plasma–Sprayed Thermal Barrier System upon Thermal Cycling, Mater. Sci. Eng. A, 2003, vol. 345, pp. 172–178.CrossRefGoogle Scholar
  28. 28.
    Yu, H.–H. and Hutchinson, J.W., Influence of Substrate Compliance on Buckling Delamination of Thin Films, Int. J. Fract., 2002, vol. 113, pp. 39–55.CrossRefGoogle Scholar
  29. 29.
    Cotterell, B. and Chen, Z., Buckling and Cracking of Thin Film on Compliant Substrates under Compression, Int. J. Fract., 2000, vol. 104, pp. 169–179.CrossRefGoogle Scholar
  30. 30.
    Gioia, G. and Ortiz, M., Delamination of Compressed Thin Films, Adv. Appl. Mech., 1997, vol. 33, pp. 120–192.zbMATHGoogle Scholar
  31. 31.
    Nilsson, K.F. and Giannakopoulos, A.E., A Finite Element Analysis of Configurational Stability and Finite Growth of Buckling Driven Delaminations, J. Mech. Phys. Solids, 1995, vol. 43, pp. 1983–2021.ADSCrossRefzbMATHGoogle Scholar
  32. 32.
    Hutchinson, J.W. and Suo, Z., Mixed Mode Cracking in Layered Materials, A v. Appl. Mech., 1992, vol. 29, pp. 63–191.CrossRefzbMATHGoogle Scholar
  33. 33.
    Hutchinson, J.W., Thouless, M., and Liniger, E.G., Growth and Configurational Stability of Circular, Buckling–Driven Film Delamination, Acta Met. Mater., 1992, vol. 40, pp. 295–308.CrossRefGoogle Scholar
  34. 34.
    Bhatnagar, H., Ghosh, S., and Walter, M.E., Parametric Studies of Failure Mechanisms in Elastic EB–PVD Thermal Barrier Coatings Using FEM, Int. J. Solids Struct., 2006, vol. 43, pp. 4384–4406.CrossRefzbMATHGoogle Scholar
  35. 35.
    Martena, M., Botto, D., Fino, P., Sabbadini, S., Gola, M.M., and Badini, C., Modelling of TBC System Failure: Stress Distribution as a Function of TGO Thickness and Thermal Expansion Mismatch, Eng. Fail. Anal., 2006, vol. 13, pp. 409–426.CrossRefGoogle Scholar
  36. 36.
    Segerlind, L., Applied Finite Element Analysis, New York: John Wiley & Sons, Inc., 1985.zbMATHGoogle Scholar
  37. 37.
    Zienkiewicz, O.C. and Morgan, K., Finite Elements and Approximation, New York: John Wiley & Sons, Inc., 1983.zbMATHGoogle Scholar
  38. 38.
    Zienkiewicz, O.C., Taylor, R.L., and Zhu, J.Z., The Finite Element Method: Its Basis and Fundamentals, Amsterdam: Butterworth Heinemann, 2013.zbMATHGoogle Scholar
  39. 39.
    Panin, V.E. and Egorushkin, V.E., Basic Physical Mesomechanics of Plastic Deformation and Fracture of Solids as Hierarchically Organized Nonlinear Systems, Phys. Mesomech., 2015, vol. 18, no. 4, pp. 377–390.CrossRefGoogle Scholar
  40. 40.
    Timoshenko, S.P. and Woinowsky–Krieger, S., Theory of Plates and Shells, New York: McGraw–Hill, 1959.zbMATHGoogle Scholar
  41. 41.
    Karmishin, A.V., Lyaskovets, V.A., Myachenkov, V.I., and Frolov, A.N., Statics and Dynamics of Thin–Walled Shell Structures, Moscow: Mashinostroenie, 1975.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. A. Lyukshin
    • 1
    Email author
  • B. A. Lyukshin
    • 1
    • 2
    • 3
  • N. Yu. Matolygina
    • 1
  • S. V. Panin
    • 1
    • 4
  1. 1.Institute of Strength Physics and Materials Science, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk State University of Control Systems and RadioelectronicsTomskRussia
  3. 3.National Research Tomsk State UniversityTomskRussia
  4. 4.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations