Advertisement

Physical Mesomechanics

, Volume 21, Issue 6, pp 475–482 | Cite as

Experimental and Theoretical Study of Coating Spalling under High-Cycle Fractional Loading

  • E. V. TorskayaEmail author
  • A. M. Mezrin
  • I. V. Mosyagina
  • Yu. V. Kornev
Article
  • 4 Downloads

Abstract

An experimental and theoretical study of contact fatigue damage accumulation at the coating-substrate interface has been carried out for the case of frictional contact between a smooth coating and a rough counterbody. Coatings were synthesized via low-temperature thermal decomposition of metal (Al, Zr) carboxylate solutions, which resulted in the formation of nanoscale amorphous nanocrystalline oxide layers 20–400 nm thick (depending on the concentration of the film-forming solution and the number of loading cycles) on the substrate surface (quartz glass). The investigation included coating deposition, determination of coating mechanical properties by indentation, development of the friction test procedure, stress calculation at the coating-substrate interface by modeling high-cyclic frictional loading, and the choice of a damage accumulation model for the coating-substrate interface that relates the stress state to the number of cycles to coating spalling. Preliminary tests revealed the coating compositions and coating deposition techniques that provide the highest spalling resistance under cyclic contact loading. Parameters in the relation for contact fatigue damage accumulation were determined and the model was verified by analyzing the experimental load dependence of the number of cycles to coating spalling on the microscale. It has been shown that the linear damage summation model conventionally used for describing failure due to fatigue damage accumulation in some materials can be applied to investigate the coating-substrate interface whose properties depend not only on the properties of the interfacing materials but also on the coating deposition technique.

Keywords

coating contact problem indentation roughness friction contact fatigue failure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stewart, S. and Ahmed, R., Rolling Contact Fatigue of Surface Coatings—A Review, Wear, 2002, vol. 253(11–12), pp. 1132–1144.CrossRefGoogle Scholar
  2. 2.
    Zhong–yu, P., Bin–shi, X., Hai–dou, W., and Dong–hui, W., Investigation of RCF Failure Prewarning of Fe–Based Coating by Online Monitoring, Tribol. Int., 2014, vol. 72, pp. 156–160.CrossRefGoogle Scholar
  3. 3.
    Goryacheva, I.G. and Torskaya, E.V., A Periodical Contact Problem for a System of Dies and Elastic Layer Adhered to Another Base, Trenie Iznos, 1995, vol. 16, no. 4, pp. 642–652.Google Scholar
  4. 4.
    Goryacheva, I.G. and Torskaya, E.V., Modeling of Fatigue Wear of a Two–Layered Elastic Half–Space in Contact with Periodic System of Indenters, Wear, 2010, vol. 286(11–12), pp. 1417–1422.CrossRefGoogle Scholar
  5. 5.
    Torskaya, E.V., Modeling of Fatigue Damage of Coated Bodies under Frictional Loading, Phys. Mesomech., 2016, vol. 19, no. 3, pp. 291–297.CrossRefGoogle Scholar
  6. 6.
    Goryacheva, I.G., Contact Mechanics in Tribology, Dordercht: Kluwer Academic Publ., 1998.CrossRefzbMATHGoogle Scholar
  7. 7.
    Nikishin, V.S. and Shapiro, G.S., Three–Dimensional Problems of Elasticity Theory for Multilayered Media, Moscow: VTs AN SSSR, 1970.Google Scholar
  8. 8.
    Ionov, V.N. and Ogibalov, P.M., Strength of Three–Dimensional Structural Elements, Moscow: Vysshaya Shkola, 1972.Google Scholar
  9. 9.
    Collins, J.A., Failure ofMaterials in Mechanical Design: Analysis, Prediction, Prevention, New York: Wiley, 1993.Google Scholar
  10. 10.
    Sakharov, V.V., Baskov, P.B., Berikashvili, V.Sh., Ivkina, O.V., Kosov, D.E., Mosyagina, I.V., Frolov, N.N., and Sharipova, M.A., Nanoscale Oxide Surface Modification of Inorganic Materials, Russ. J. Gen. Chem., 2013, vol. 83, no. 11, pp. 2159–2166.CrossRefGoogle Scholar
  11. 11.
    Torskaya, E.V., Kurbatkin, I.I., Mezrin, A.M., Morozov, A.V., Murav'eva, T.I., Frolov, N.N., and Sakharov, V.V., Mechanical and Tribological Properties of Nanostructured Coatings Based on Multicomponent Oxides, J. Friction Wear, 2013, vol. 34, no. 2, pp. 99–106.CrossRefGoogle Scholar
  12. 12.
    Kravchuk, K.S., Torskaya, E.V., Useinov A.S., and Frolov, N.N., Experimental and Theoretical Study of What Causes Spallation for Multicomponent Oxide–Based Coatings under Friction Loading, Mech. Solids, 2015, vol. 50, no. 1, pp. 52–61.ADSCrossRefGoogle Scholar
  13. 13.
    Kablov, E.N., Grashchenkov, D.V., Isaeva, N.V., and Solntsev, S.S., Perspective High–Temperature Ceramic Composite Materials, Russ. J. Gen. Chem., 2011, vol. 81, no. 5, pp. 986–991.CrossRefGoogle Scholar
  14. 14.
    Andreeva, A.V., Basics of Physical Chemistry and Technology of ComPosites: Handbookfor Students, Moscow: Radiotekhnika, 2001.Google Scholar
  15. 15.
    Useinov, A.S., Radzinsky, S.A., Kravchuk, K.S., Zolkina, I.Yu., Andreeva, T.I., and Simonov–Emelyanov, I.D., Physical and Mechanical Properties of Siloxane Coating on Polymer Substrates, Plast. Massy, 2012, no. 4, pp. 14–18.Google Scholar
  16. 16.
    Goryacheva, I.G., Torskaya, E.V., Kornev, Yu.V., Grigoriev, A.Ya., Kovaleva, I.N., and Myshkin, N.K., Theoretical and Experimental Study of the Mechanical Properties of Bicomponent Metal Vapor Deposited Coatings, J. Friction Wear, 2015, vol. 36, no. 3, pp. 262–265.CrossRefGoogle Scholar
  17. 17.
    Sachek, B.Ya. and Merzin, A.M., Studies of the Performance Characteristics of Epilamized Materials under Conditions of Dry Friction, J. Machin. Manufact. Reliab., 2015, no. 1, pp. 40–45.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. V. Torskaya
    • 1
    Email author
  • A. M. Mezrin
    • 1
  • I. V. Mosyagina
    • 2
  • Yu. V. Kornev
    • 3
  1. 1.Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia
  2. 2.All-Russian Research Institute of Chemical TechnologyMoscowRussia
  3. 3.Institute of Applied MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations