Advertisement

Physical Mesomechanics

, Volume 20, Issue 3, pp 324–333 | Cite as

Micromechanical model of deformation-induced surface roughening in polycrystalline materials

  • V. A. Romanova
  • R. R. Balokhonov
  • A. V. Panin
  • E. E. Batukhtina
  • M. S. Kazachenok
  • V. S. Shakhijanov
Article
  • 32 Downloads

Abstract

A micromechanical model has been developed to describe deformation-induced surface roughening in polycrystalline materials. The three-dimensional polycrystalline structure is taken into account in an explicit form with regard to the crystallographic orientation of grains to simulate the micro- and mesoscale deformation processes. Constitutive relations for describing the grain response are derived on the basis of crystal plasticity theory that accounts for the anisotropy of elastic-plastic properties governed by the crystal lattice structure. The micromechanical model is used to numerically study surface roughening in microvolumes of polycrystalline aluminum and titanium under uniaxial tensile deformation. Two characteristic roughness scales are distinguished in the both cases. At the microscale, normal displacements relative to the free surface are caused by the formation of dislocation steps in grains emerging on the surface and by the displacement of neighboring grains relative to each other. Microscale roughness is more pronounced in titanium, which is due to the high level of elastic-plastic anisotropy typical of hcp crystals. The mesoscale roughness includes undulations and cluster structures formed with the involvement of groups of grains. The roughness is quantitatively evaluated using a dimensionless parameter, called the degree of roughness, which reflects the degree of surface shape deviation from a plane. An exponential dependence of the roughness degree on the strain degree is obtained.

Keywords

polycrystalline structure uniaxial tension surface roughness numerical simulation crystal plasticity theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Raabe, D., Sachtleber, M., Weiland, H., Scheele, G., and Zhao, Z. Grain-Scale Micromechanics of Polycrystal Surfaces during Plastic Straining, Acta Mater., 2003, vol. 51, pp. 1539–1560. doi 10.1016/S1359-6454(02) 00557-8CrossRefGoogle Scholar
  2. 2.
    Egorushkin, V.E., Panin, V.E., and Panin, A.V., Influence of Multiscale Localized Plastic Flow on Stress-Strain Patterns, Phys. Mesomech., 2015, vol. 18, no. 1, pp. 8–12.CrossRefGoogle Scholar
  3. 3.
    Lee, P.S., Piehler, H.R., Adams, B.L., Jarvis, G., Hampel, H., and Rollett, A.D., Influence of Surface Texture on Orange Peel in Aluminum, J. Mater. Process. Technol., 1998, vol. 80-81, pp. 315–319. doi http://dx.doi.org/10.1016/S0924-0136(98)00189-7CrossRefGoogle Scholar
  4. 4.
    Miranda-Medina, M.L., Somkuti, P., Bianchi, D., Cihak-Bayr, U., Bader, D., Jech, M., and Vernes, A., Characterisation of Orange Peel on Highly Polished Steel Surfaces, Surf Eng., 2015, vol. 31, pp. 519–525. doi 10.1179/1743294414Y.0000000407CrossRefGoogle Scholar
  5. 5.
    Shin, H.J., An, J.K., Park, S.H., and Lee, D.N., The Effect of Texture on Ridging of Ferritic Stainless Steel, Acta Mater., 2003, vol. 51, pp. 4693–4706. doi 10.1016/S1359-6454(03)00187-3CrossRefGoogle Scholar
  6. 6.
    Wouters, O., Vellinga, W.P., van Tijum, R., and De Hosson, J.T.M., Effects of Crystal Structure and Grain Orientation on the Roughness of Deformed Polycrystalline Metals, Acta Mater., 2006, vol. 54, pp. 2813–2821. doi 10.1016/j.actamat.2006.02.023CrossRefGoogle Scholar
  7. 7.
    Derevyagina, L.S., Panin, V.E., and Gordienko, A.I., SelfOrganization of Plastic Shears in Localized Deformation Macrobands in the Neck of High-Strength Polycrystals, Its Role in Material Fracture under Uniaxial Tension, Phys. Mesomech., 2008, vol. 11, no. 1-2, pp. 51–62.CrossRefGoogle Scholar
  8. 8.
    Zuev, L.B., Autowave Model of Plastic Flow, Phys. Mesomech., 2011, vol. 14, no. 5-6, pp. 275–282. doi 10.1016/j.physme.2011.12.00613CrossRefGoogle Scholar
  9. 9.
    Panin, A.V., Romanova, V.A., Balokhonov, R.R., Perevalova, O.B., Sinyakova, E.A., Emelyanova, O.S., Leontieva-Smirnova, M.V., and Karpenko, N.I., Mesoscopic Surface Folding in EK-181 Steel Polycrystals under Uniaxial Tension, Phys. Mesomech., 2012, vol. 15, no. 1-2, pp. 94–103. doi 10.1134/S1029959912010109CrossRefGoogle Scholar
  10. 10.
    Guilhem, Y., Basseville, S., Curtit, F., Stephan, J.M., and Cailletaud, G., Numerical Investigations of the Free Surface Effect in Three-Dimensional Polycrystalline Aggregates, Comput. Mater. Sci., 2013, vol. 70, pp. 150–162. doi 10.1016/j.commatsci.2012.11.052CrossRefGoogle Scholar
  11. 11.
    Romanova, V.A., Balokhonov, R.R., and Schmauder, S., Numerical Study of Mesoscale Surface Roughening in Aluminum Polycrystals under Tension, Mater. Sci. Eng. A, 2013, vol. 564, pp. 255–263. doi 10.1016/j.msea.2012. 12.004CrossRefGoogle Scholar
  12. 12.
    Romanova, V., Balokhonov, R., and Zinovieva, O., A Micromechanical Analysis of Deformation-Induced Surface Roughening in Surface-Modified Polycrystalline Materials, Meccanica, 2016, vol. 51, pp. 359–370. doi 10.1007/s11012-015-0294-xCrossRefGoogle Scholar
  13. 13.
    Romanova, V., Balokhonov, R., Zinovieva, O., and Shakhidjanov, V., Numerical Study of the Surface Hardening Effect on the Deformation-Induced Roughening in Titanium Polycrystals, Comput. Mater. Sci., 2016, vol. 116, pp. 96–102.CrossRefGoogle Scholar
  14. 14.
    Needleman, A., Computational Mechanics at the Mesoscale, Acta Mater., 2000, vol. 48, pp. 105–124.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Diard, O., Leclercq, S., Rousselier, G., and Cailletaud, G., Evaluation of Finite Element Based Analysis of 3D Multicrystalline Aggregates Plasticity. Application to Crystal Plasticity Model Identification and the Study of Stress and Strain Fields near Grain Boundaries, Int. J. Plast., 2005, vol. 21, pp. 691–722. doi 10.1016/j.ijplas.2004.05.017CrossRefzbMATHGoogle Scholar
  16. 16.
    Roters, F., Eisenlohr, P., Hantcherli, L., Tjahjanto, D.D., Bieler, T.R., and Raabe, D., Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-Element Modeling: Theory, Experiments, Applications, Acta Mater., 2010, vol. 58, pp. 1152–1211. doi 10.1016/j.actamat.2009.10.058CrossRefGoogle Scholar
  17. 17.
    Trusov, P.V. and Shveykin, A.I., Multilevel Crystal Plasticity Models of Single- and Polycrystals, Phys. Mesomech., 2013, vol. 16, pp. 99–124. doi 10.1134/s1029959913 020021CrossRefGoogle Scholar
  18. 18.
    Wang, L., Barabash, R.I., Yang, Y., Bieler, T.R., Crimp, M.A., Eisenlohr, P., Liu, W., and Ice, G.E., Experimental Characterization and Crystal Plasticity Modeling of Heterogeneous Deformation in Polycrystalline a-Ti, Metall. Mater. Trans. A, 2007, vol. 42, pp. 626–635.CrossRefGoogle Scholar
  19. 19.
    Alankar, A., Eisenlohr, P., and Raabe, D., A Dislocation Density-Based Crystal Plasticity Constitutive Model for Prismatic Slip in a-Titanium, Acta Mater., 2011, vol. 59, pp. 7003–7009. doi 10.1016/j.actamat.2011.07.053CrossRefGoogle Scholar
  20. 20.
    Becker, H. and Pantleon, W., Work-Hardening Stages and Deformation Mechanism Maps during Tensile Deformation of Commercially Pure Titanium, Comput. Mater. Sci., 2013, vol. 76, pp. 52–59. doi 10.1016/j.commatsci. 2013.03.028CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Romanova
    • 1
  • R. R. Balokhonov
    • 1
  • A. V. Panin
    • 1
    • 2
  • E. E. Batukhtina
    • 1
  • M. S. Kazachenok
    • 1
  • V. S. Shakhijanov
    • 3
  1. 1.Institute of Strength Physics and Materials Science, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia
  3. 3.National Research Tomsk State UniversityTomskRussia

Personalised recommendations