Physical Mesomechanics

, Volume 20, Issue 3, pp 311–323 | Cite as

Crystal plasticity study on stress and strain partitioning in a measured 3D dual phase steel microstructure

  • M. Diehl
  • D. An
  • P. Shanthraj
  • S. Zaefferer
  • F. Roters
  • D. Raabe
Article

Abstract

Dual phase steels are advanced high strength alloys typically used for structural parts and reinforcements in car bodies. Their good combination of strength and ductility and their lean composition render them an economically competitive option for realizing multiple lightweight design options in automotive engineering. The mechanical response of dual phase steels is the result of the strain and stress partitioning among the ferritic and martensitic phases and the individual crystallographic grains and subgrains of these phases. Therefore, understanding how these microstructural features influence the global and local mechanical properties is of utmost importance for the design of improved dual phase steel grades. While multiple corresponding simulation studies have been dedicated to the investigation of dual phase steel micromechanics, numerical tools and experiment techniques for characterizing and simulating real 3D microstructures of such complex materials have been emerged only recently. Here we present a crystal plasticity simulation study based on a 3D dual phase microstructure which is obtained by EBSD tomography, also referred to as 3D EBSD (EBSD—electron backscatter diffraction). In the present case we utilized a 3D EBSD serial sectioning approach based on mechanical polishing. Moreover, sections of the 3D microstructure are used as 2D models to study the effect of this simplification on the stress and strain distribution. The simulations are conducted using a phenomenological crystal plasticity model and a spectral method approach implemented in the Düsseldorf Advanced Material Simulation Kit (DAMASK).

Keywords

crystal plasticity dual phase steel microstructure DAMASK spectral method 3D EBSD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tasan, C.C., Diehl, M., Yan, D., Bechtold, M., Roters, F., Schemmann, L., Zheng, C., Peranio, N., Ponge, D., Koyama, M., Tsuzaki, K., and Raabe, D., An Overview of DualPhase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Gided Design, Annu. Rev. Mater. Res., 2015, vol. 45, pp. 391–431.ADSCrossRefGoogle Scholar
  2. 2.
    Karlsson, B. and Sundström, B.O., Inhomogeneity in Plastic Deformation of Two-Phase Steels, Mater. Sci. Eng., 1974, vol. 16(1-2), pp. 161–168.CrossRefGoogle Scholar
  3. 3.
    Kadkhodapour, J., Butz, A., Ziaei-Rad, S., and Schmauder, S., A Micromechanical Study on Failure Initiation of Dual Phase Steels under Tension Using Single Crystal Plasticity Model, Int. J. Plasticity, 2011, vol. 27(7), pp. 1103–1125.CrossRefMATHGoogle Scholar
  4. 4.
    Tasan, C.C., Hoefnagels, J.P.M., Diehl, M., Yan, D., Roters, F., and Raabe, D., Strain Localization and Damage in Dual Phase Steels Investigated by Coupled In-situ Deformation Experiments-Crystal Plasticity Simulations, Int. J. Plasticity, 2014, vol. 63, pp. 198–210.CrossRefGoogle Scholar
  5. 5.
    Tasan, C.C., Diehl, M., Yan, D., Zambaldi, C., Shanthraj, P., Roters, F., and Raabe, D., Integrated Experimental-Numerical Analysis of Stress and Strain Partitioning in Multi-Phase Alloys, Acta Mater., 2014, vol. 81, pp. 386–400.CrossRefGoogle Scholar
  6. 6.
    Scherff, F., Goldschmidt, F., Scholl, S., and Diebels, S., High-Resolution Simulation of Microstructures in DualPhase Steel, PAMM, 2016, vol. 16(1), pp. 391–392.CrossRefGoogle Scholar
  7. 7.
    Uthaisangsuk, V., Prahl, U., and Bleck, W., Stretch-Flangeability Characterization of Multiphase Steel Using a Microstructure Based Failure Modeling, Comp. Mater. Sci., 2009, vol. 45(3), pp. 617–623.CrossRefMATHGoogle Scholar
  8. 8.
    Fillafer, A., Krempaszky, C., and Werner, E., On Strain Partitioning and Micro-Damage Behavior of Dual-Phase Steels, Mater. Sci. Eng. A, 2014, vol. 614, pp. 180–192.CrossRefGoogle Scholar
  9. 9.
    Scheunemann, L., Balzani, D., Brands, D., Schröder, J., and Raabe, D., Statistically Similar RVE Construction Based on 3D Dual-Phase Steel Microstructures, Proc. 5th Int. Conf Structural Engineering, Mechanics and Computation, Boca Raton: CRC Press, 2013, pp. 411–416.Google Scholar
  10. 10.
    Brands, D., Balzani, D., Scheunemann, L., Schröder, J., Richter, H., and Raabe, D., Computational Modeling of Dual-Phase Steels Based on Representative Three-Dimensional Microstructures Obtained from EBSD Data, Arch. Appl. Mech., 2016, vol. 86(3), pp. 575–598.ADSCrossRefGoogle Scholar
  11. 11.
    Woo, W., Em, V.T., Kim, E-Y, Han, S.H., Han, Y.S., and Choi, S-H, Stress-Strain Relationship between Ferrite and Martensite in a Dual-Phase Steel Studied by in Situ Neutron Diffraction and Crystal Plasticity Theories, Acta Mater., 2012, vol. 60(20), pp. 6972–6981.CrossRefGoogle Scholar
  12. 12.
    Diehl, M., Shanthraj, P., Eisenlohr, P., and Roters, F., Neighborhood Influences on Stress and Strain Partitioning in Dual-Phase Microstructures. An Investigation on Synthetic Polycrystals with a Robust Spectral-Based Numerical Method, Meccanica, 2016, vol. 51(2), pp. 429–441.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Pagenkopf, J., Butz, A., Wenk, M., and Helm, D., Virtual Testing of Dual-Phase Steels: Effect of Martensite Morphology on Plastic Flow Behavior, Mater. Sci. Eng. A, 2016, vol. 674, pp. 672–686.CrossRefGoogle Scholar
  14. 14.
    Zeghadi, A., N’guyen, F., Forest, S., Gourgues, A-F, and Bouaziz, O., Ensemble Averaging Stress-Strain Fields in Polycrystalline Aggregates with a Constrained Surface Microstructure. Part 1: Anisotropic Elastic Behavior, Philos. Mag., 2007, vol. 87(8-9), pp. 1401–1424.ADSCrossRefGoogle Scholar
  15. 15.
    Zeghadi, A., Forest, S., Gourgues, A.-F., and Bouaziz, O., Ensemble Averaging Stress-Strain Fields in Polycrystalline Aggregates with a Constrained Surface Microstructure. Part 2: Crystal Plasticity, Philos. Mag., vol. 87(8-9).Google Scholar
  16. 16.
    Roters, F., Eisenlohr, P., Kords, C., Tjahjanto, D.D., Diehl, M., and Raabe, D., DAMASK: the Dusseldorf Advanced Material Simulation Kit for Studying Crystal Plasticity Using an FE Based or a Spectral Numerical Solver, Proc. IUTAM: From Microstructure to Macroscale Properties, Cazacu, O., Ed., Amsterdam: Elsevier, 2012, vol. 3, pp. 3–10.CrossRefGoogle Scholar
  17. 17.
    Reina, C. and Conti, S., Kinematic Description of Crystal Plasticity in the Finite Kinematic Framework: A Micromechanical Understanding of F = F eFp, J. Mech. Phys. Solids, 2014, vol. 67, pp. 40–61.ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Roters, F., Eisenlohr, P., Bieler, T.R., and Raabe, D., Crystal Plasticity Finite Element Methods in Materials Science and Engineering, Weinheim: Wiley-VCH, 2010.CrossRefGoogle Scholar
  19. 19.
    Kords, C., On the Role of Dislocation Transport in the Constitutive Description of Crystal Plasticity: PhD Thesis, Berlin: RWTH Aachen, 2013. http://darwin.bth.rwth-aachen.de/opus3/volltexte/2014/4862Google Scholar
  20. 20.
    Hutchinson, J.W., Bounds and Self-Consistent Estimates for Creep of Polycrystalline Materials, Proc. R. Soc. A, 1976, vol. 348, pp. 101–127.ADSCrossRefMATHGoogle Scholar
  21. 21.
    Gottstein, G., Physical Foundations of Material Science, Berlin: Springer, 2004.CrossRefGoogle Scholar
  22. 22.
    Groger, R. and Vitek, V., Breakdown of the Schmid Law in BCC Molybdenum Related to the Effect of Shear Stress Perpendicular to the Slip Direction, Mat. Sci. Forum, 2005, vol. 482, pp. 123–126.CrossRefGoogle Scholar
  23. 23.
    Moulinec, H. and Suquet, P., A Fast Numerical Method for Computing the Linear and Nonlinear Properties of Composites, Comptes Rendus de l’Academie des Sciences. Ser II. Mecanique, Physique, Chimie, Astronomie, 1994, vol. 318, pp. 1417–1423.MATHGoogle Scholar
  24. 24.
    Schneider, M., Ospald, F., and Kabel, M., Computational Homogenization of Elasticity on a Staggered Grid, Int. J. Numer Meth. Eng., 2015, vol. 105(9), pp. 693–720.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Kabel, M., Fliegener, S., and Schneider, M., Mixed Boundary Conditions for FFT-Based Homogenization at Finite Strains, Comp. Mater. Sci., 2016, vol. 57(2), pp. 193–210.MathSciNetMATHGoogle Scholar
  26. 26.
    Zeman, J., de Geus, T.W.J., Vondrejc, J., Peerlings, R.H.J., and Geers, M.G.D., A Finite Element Perspective on NonLinear FFT-Based Micromechanical Simulations, Int. J. Numer Meth. Eng., 2017. doi 10.1002/nme.5481Google Scholar
  27. 27.
    Lebensohn, R.A., N-Site Modeling of a 3D Viscoplastic Polycrystal Using Fast Fourier Transform, Acta Mater., 2001, vol. 49(14), pp. 2723–2737.CrossRefGoogle Scholar
  28. 28.
    Lebensohn, R.A., Castelnau, O., Brenner, R., and Gilormini, P., Study of the Antiplane Deformation of Linear 2D Polycrystals with Different Microstructures, Int. J. Solids. Struct., 2005, vol. 42(20), pp. 5441–5459.CrossRefMATHGoogle Scholar
  29. 29.
    Lefebvre, G., Sinclair, C.W., Lebensohn, R.A., and Mithieux, J.-D., Accounting for Local Interactions in the Prediction of Roping of Ferritic Stainless Steel Sheets, Model. Simul. Mater. Sci. Eng., 2012, vol. 20(2), p. 024008.ADSCrossRefGoogle Scholar
  30. 30.
    Lebensohn, R.A., Kanjarla, A.K., and Eisenlohr, P., An Elasto-Viscoplastic Formulation Based on Fast Fourier Transforms for the Prediction of Micromechanical Fields in Polycrystalline Materials, Int. J. Plasticity, 2012, vol. 3233, pp. 59–69.CrossRefGoogle Scholar
  31. 31.
    Suquet, P., Moulinec, H., Castelnau, O., Montagnat, M., Lahellec, N., Grennerat, F., Duval, P., and Brenner, R., MultScale Modeling of the Mechanical Behavior of Polycrystalline Ice under Transient Creep, Procedia IUTAM, 2012, vol. 3, pp. 76–90.CrossRefGoogle Scholar
  32. 32.
    Grennerat, F., Montagnat, M., Castelnau, O., Vacher, P., Moulinec, H., Suquet, P., and Duval, P., Experimental Characterization of the Intragranular Strain Field in Columnar Ice during Transient Creep, Acta Mater., 2012, vol. 60(8), pp. 3655–3666.CrossRefGoogle Scholar
  33. 33.
    Michel, J.C., Moulinec, H., and Suquet, P., A Computational Scheme for Linear and Non-Linear Composites with Arbitrary Phase Contrast, Int. J. Numer. Meth. Eng., 2001, vol. 52(12), pp. 139–160.CrossRefGoogle Scholar
  34. 34.
    Eyre, D.J. and Milton, G.W., A Fast Numerical Scheme for Computing the Response of Composites Using Grid Refinement, Eur. Phys. J. Appl. Phys., 1999, vol. 6(1), pp. 41–47.ADSCrossRefGoogle Scholar
  35. 35.
    Monchiet, V. and Bonnet, G., A Polarization-Based FFT Iterative Scheme for Computing the Effective Properties of Elastic Composites with Arbitrary Contrast, Int. J. Numer. Meth. Eng., 2012, vol. 89(11), pp. 1419–1436.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Zeman, J., Vondrejc, J., Novak, J., and Marek, I., Accelerating a FFT-Based Solver for Numerical Homogenization of Periodic Media by Conjugate Gradients, J. Comput. Phys, 2010, vol. 229(21), pp. 8065–8071.ADSMathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Brisard, S. and Dormieux, L., FFT-Based Methods for the Mechanics of Composites: A General Variational Framework, Comp. Mater. Sci., 2010, vol. 49(3), pp. 663–671.CrossRefGoogle Scholar
  38. 38.
    Eisenlohr, P., Diehl, M., Lebensohn, R.A., and Roters, F., A Spectral Method Solution to Crystal Elasto-Viscoplasticity at Finite Strains, Int. J. Plasticity, 2013, vol. 46, pp. 37–53.CrossRefGoogle Scholar
  39. 39.
    Shanthraj, P., Eisenlohr, P., Diehl, M., and Roters, F., Numerically Robust Spectral Methods for Crystal Plasticity Simulations of Heterogeneous Materials, Int. J. Plasticity, 2015, vol. 66, pp. 31–45.CrossRefGoogle Scholar
  40. 40.
    Lahellec, N., Michel, J.C., Moulinec, H., and Suquet, P., Analysis of Inhomogeneous Materials at Large Strains Using Fast Fourier Transforms, Solid Mechanics and Its Applications: IUTAM Symposium on Computational Mechanics of Solid Materials at Large Strains, Miehe, C., Ed., Dordrecht: Kluwer Academic Publishers, 2001, vol. 108, pp. 247–258.MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Mura, T., Micromechanics of Defects in Solids, Dordrecht: Martinus Nijhoff Publishers, 1987.CrossRefMATHGoogle Scholar
  42. 42.
    Michel, J.C., Moulinec, H., and Suquet, P., A Computational Method Based on Augmented Lagrangians and Fast Fourier Transforms for Composites with High Contrast, Comput. Model. Eng. Sci., 2000, vol. 1(2), pp. 79–88.MathSciNetGoogle Scholar
  43. 43.
    Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems, Fortin, M. and Glowinski, R., Eds., 1983.Google Scholar
  44. 44.
    Frigo, M. and Johnson, S.G., FFTW, 2014. http://www.fftw.orgGoogle Scholar
  45. 45.
    Frigo, M. and Johnson, S.G., The Design and Implementation of FFTW3, Proc. IEEE, 2005, vol. 93(2), pp. 216–231.CrossRefGoogle Scholar
  46. 46.
    Moulinec, H. and Silva, F., Comparison of Three Accelerated FFT-Based Schemes for Computing the Mechanical Response of Composite Materials, Int. J. Numer. Meth. Eng., 2014, vol. 97(13), pp. 960–985.MathSciNetCrossRefMATHGoogle Scholar
  47. 47.
    PETSc Team, 2015. http://www.mcs.anl.gov/petscGoogle Scholar
  48. 48.
    Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., and Zhang, H., PETSc Users Manual: Technical Report, 2013.CrossRefGoogle Scholar
  49. 49.
    Oosterlee, C.W. and Washio, T., Krylov Subspace Acceleration of Nonlinear Multigrid with Application to Recirculating Flows, SIAM J. Sci. Comput., 2000, vol. 21(5), pp. 1670–1690.MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Zaefferer, S., Wright, S.I., and Raabe, D., Three-Dimensional Orientation Microscopy in a Focused Ion Beam-Scanning Electron Microscope: A New Dimension of Microstructure Characterization, Metall. Mater. Trans. A, 2008, vol. 39(2), pp. 374–389.CrossRefGoogle Scholar
  51. 51.
    Konijnenberg, P.J., Zaefferer, S., Lee, S.B., Rollett, A.D., Rohrer, G.S., and Raabe, D., Advanced Methods and Tools for Reconstruction and Analysis of Grain Boundaries from 3D-EBSD Data Sets, Mat. Sci. Forum, 2011, vol. 702-703, pp. 475–478.CrossRefGoogle Scholar
  52. 52.
    Schemmann, L., Zaefferer, S., Raabe, D., Friedel, F., and Mattissen, D., Alloying Effects on Microstructure Formation of Dual Phase Steels, Acta Mater., 2015, vol. 95, pp. 386–398.CrossRefGoogle Scholar
  53. 53.
    Morito, S., Tanaka, H., Konishi, R., Furuhara, T., and Maki, T., The Morphology and Crystallography of Lath Martensite in Fe-C Alloys, Acta Mater., 2003, vol. 51(6), pp. 1789–1799.CrossRefGoogle Scholar
  54. 54.
    Calcagnotto, M., Adachi, Y., Ponge, D., and Raabe, D., Deformation and Fracture Mechanisms in Fine- and Ultrafinegrained Ferrite/Martensite Dual-Phase Steels and the Effect of Aging, Acta Mater., 2011, vol. 59(2), pp. 658–670.CrossRefGoogle Scholar
  55. 55.
    Yan, D., Tasan, C.C., and Raabe, D., High Resolution in Situ Mapping of Microstrain and Microstructure Evolution Reveals Damage Resistance Criteria in Dual Phase Steels, Acta Mater., 2015, vol. 96, pp. 399–409.CrossRefGoogle Scholar
  56. 56.
    Shanthraj, P., Sharma, L., Svendsen, B., Roters, F., and Raabe, D., A Phase Field Model for Damage in Elasto-Viscoplastic Materials, Comput. Meth. Appl. Mech. Eng., 2016, vol. 312, pp. 167–185.ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    Shanthraj, P., Svendsen, B., Sharma, L., Roters, F., and Raabe, D., Elasto-Viscoplastic Phase Field Modeling of Anisotropic Cleavage Fracture, J. Mech. Phys. Solids, 2017, vol. 99, pp. 19–34.ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • M. Diehl
    • 1
  • D. An
    • 1
  • P. Shanthraj
    • 1
  • S. Zaefferer
    • 1
  • F. Roters
    • 1
  • D. Raabe
    • 1
  1. 1.Max-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany

Personalised recommendations