Advertisement

Physical Mesomechanics

, Volume 20, Issue 3, pp 291–304 | Cite as

Molecular dynamics investigations of the strengthening of Al-Cu alloys during thermal ageing

  • W. VerestekEmail author
  • A.-P. Prskalo
  • M. Hummel
  • P. Binkele
  • S. Schmauder
Article

Abstract

Classical molecular dynamics simulations of the interaction of edge dislocations with solid soluted copper atoms and Guinier-Preston zones (I and II) in aluminium are performed using embedded atom method potentials. Hereby, the strengthening mechanism and its modulus are identified for different stages of thermally aged Al-Cu alloys. Critical resolved shear stresses are calculated for different concentrations of solid soluted copper. In case of precipitate strengthening, the Guinier-Preston zone size, its orientation and offset from the dislocation plane are taken as simulation parameters. It is found that in case of solid soluted copper, the critical resolved shear stress is proportional to the copper concentration. In case of the two subsequent aging stages both the dislocation depinning mechanism as well as the depinning stress are highly dependent on the Guinier-Preston zone orientation and to a lesser degree to its size.

Keywords

molecular dynamics Al-Cu alloys Guinier-Preston zones dislocation critical resolved shear stress precipitate strengthening embedded atom method potential 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Binkele, P., Atomistische Modellierung und Computersimulation der Ostwald-Reifung von Ausscheidungen beim Einsatz von kupferhaltigen Stahlen: Dissertation, Stuttgart: Universität Stuttgart, 2007.Google Scholar
  2. 2.
    Kohlbach, I., Die Rolle von Leerstellen bei der Ausscheidungsbildung von Al-Cu-Legierungen: Diplomarbeit, Bonn: Rheinische Friedrichs-Wilhelms-Universitat Bonn, 2007.Google Scholar
  3. 3.
    Robel, M., Ab-initio Untersuchungen an Aluminium, seinen Defekten und Aluminium-Legierungen: Dissertation, Bonn: Rheinische Friedrichs-Wilhelms-Universitat Bonn, 2005.Google Scholar
  4. 4.
    Guinier, A., La Diffraction des Rayons X Aux Tres Petits Angles; Application a L’etude de Phenomenes Ultramicroscopiques, Ann. Phys. Paris, 1939, no. 12, pp. 161–237.ADSCrossRefzbMATHGoogle Scholar
  5. 5.
    Preston, G.D., The Diffraction of X-Rays by Age Hardening Alloy of Aluminium and Copper. The Structure of an Intermediate Phase, Philos. Mag., 1938, vol. 26, pp. 855–871.CrossRefGoogle Scholar
  6. 6.
    Karlik, M. and Jouffrey, B., High Resolution Electron Microscopy Study of Guinier-Preston (GP1) Zones in Al-Cu Based Alloys, Acta Mater., 1997, vol. 45, no. 8, pp. 3251–3263.CrossRefGoogle Scholar
  7. 7.
    Takeda, M., Nagura, Y., Igarashi, A., and Endo, T., Copper Concentrations Inside Guinier-Preston I Zones Formed in an Al-Cu Alloy, Z. Metallkd., 2002, vol. 93, pp. 204–207.CrossRefGoogle Scholar
  8. 8.
    Karlik, M., Jouffrey, B., and Belliot, S., The Copper Content of Guinier-Preston (GP1) Zones in Al - 1.84 at % Cu Alloy, Acta Mater., 1998, no. 5, pp. 1817–1825.CrossRefGoogle Scholar
  9. 9.
    Karlik, M., Bigot, A., Jouffrey, B., Auger, P., and Belliot, S., HREM, FIM and Tomographic Atom Probe Investigation of Guinier-Preston Zones in an Al - 1.54 at % Cu Alloy, Ultramicroscopy, 2004, no. 98, pp. 219–230.CrossRefGoogle Scholar
  10. 10.
    Son, S.-K., Takeda, M., and Endo, T., Microstructures and Thermal Stability of the Metastable-Phase Precipitates Formed in an Al-Cu Alloys, Mater. Sci. Forum, 2005, vol. 475-479, pp. 353–356.CrossRefGoogle Scholar
  11. 11.
    Karlik, M., Atomic Resolution Investigation of Guinier- Preston Zones in Al-Cu Based Alloys: Dissertation, Prague: Czech Tech. Univ., 2010.Google Scholar
  12. 12.
    Tapasa, K., Bacon, D.J., and Osetsky, Y.N., Simulation of Dislocation Glide in Dilute Fe-Cu Alloys, Mater. Sci. Eng. A, 2005, vol. 400-401, pp. 109–113.CrossRefGoogle Scholar
  13. 13.
    Schmauder, S. and Kohler, C., Atomistic Simulations of Solid Solution Strengthening of a-Iron, Comp. Mater. Sci., 2011, vol. 50, pp. 1238–1243.CrossRefGoogle Scholar
  14. 14.
    Zhang, X., Deng, H., Xiao, S., Li, X., and Hu, W., Atomistic Simulations of Solid Solution Strengthening in Ni-Based Superalloy, Comp. Mater. Sci., 2013, vol. 68, pp. 132–137.CrossRefGoogle Scholar
  15. 15.
    Kohler, C., Kizler, P., and Schmauder, S., Atomistic Simulation of the Pinning of Edge Dislocations in Ni by Ni3Al Precipitates, Mater. Sci. Eng. A, 2005, vol. 400401, pp. 481–484.CrossRefGoogle Scholar
  16. 16.
    Osetsky, Y. and Baco, D., Atomic-Scale Modelling of Primary Damage and Properties of Radiation Defects in Metals, Nucl. Instrum. Meth. Phys. Res. B, 2003, vol. 202, pp. 31–43.ADSCrossRefGoogle Scholar
  17. 17.
    Singh, C. and Warner, D., Mechanism of Guinier-Preston Zone Hardening in the Athermal Limit, Acta Mater., 2010, vol. 58, no. 17, pp. 5797–5805.CrossRefGoogle Scholar
  18. 18.
    Singh, C., Mateos, A., and Warner, D., Atomistic Simulations of Dislocation-Precipitate Interactions Emphasize Importance of Cross-Slip, Scripta Mater., 2011, vol. 64, pp. 398–401.CrossRefGoogle Scholar
  19. 19.
    Singh, C.V. and Warner, D.H., An Atomistic-Based Hierarchical Multiscale Examination of Age Hardening in an Al-Cu Alloy, Metall. Mater. Trans. A, 2013, vol. 44, pp. 2625–2644.CrossRefGoogle Scholar
  20. 20.
    Stadler, J., Mikulla, R., and Trebin, H.-R., IMD: A Software Package for Molecular Dynamics Studies on Parallel Computers, Int. J. Mod. Phys. C, 1997, vol. 8, no. 5, pp. 1131–1140.ADSCrossRefGoogle Scholar
  21. 21.
    Cheng, Y., Ma, E., and Sheng, H., Atomic Level Structure in Multi-Component Bulk Metallic Glass, Phys. Rev. Lett., 2009, vol. 102, no. 24, pp. 245501:1–4.ADSCrossRefGoogle Scholar
  22. 22.
    Srinivasan, S., Liao, X., Baskes, M., McCabe, R., Zhao, Y., and Zhu, Y., Compact and Dissociated Dislocations in Aluminum: Implications for Deformation, Phys. Rev. Lett., 2005, vol. 94, p. 125502.ADSCrossRefGoogle Scholar
  23. 23.
    Kuksin, A.Y, Stegailov, V.V., and Yanilkin, A.V., Molecular Dynamics Simulation of Edge Dislocation Dynamics in Aluminium, Dokl. Phys., 2008, vol. 53, no. 6, pp. 287–291.ADSCrossRefGoogle Scholar
  24. 24.
    Ercolessi, F. and Adams, J.B., Interatomic Potentials from First-Principles Calculations: The Force-Matching Method, Europhys. Lett., 1994, vol. 26, no. 8, pp. 583–588.ADSCrossRefGoogle Scholar
  25. 25.
    Liu, X.-Y., Ercolessi, F., and Adams, J., Aluminium Interatomic Potential from Density Functional Theory Calculations with Improved Stacking Fault Energy, Model. Simul. Mater. Sci. Eng., 2004, vol. 12, no. 4, pp. 665–670.ADSCrossRefGoogle Scholar
  26. 26.
    Mishin, Y., Farkas, D., Mehl, M.J., Papaconstantopoulos, D.A., Interatomic Potentials for Monoatomic Metals from Experimental Data and Ab Initio Calculations, Phys. Rev. B, 1999, vol. 59, no. 5, pp. 3393–3407.ADSCrossRefGoogle Scholar
  27. 27.
    Apostol, F. and Mishin, Y., Interatomic Potential for the Al-Cu System, Phys. Rev. B, 2011, vol. 83, no. 5, pp. 054116:1–8.ADSCrossRefGoogle Scholar
  28. 28.
    Stukowski, A., Structure Identification Methods for Atomistic Simulations of Crystalline Materials, Model. Simul. Mater. Sci. Eng., vol. 20, no. 4, p. 045021.Google Scholar
  29. 29.
    Kelchner, C., Plimpton, S., and Hamilton, J., Dislocation Nucleation and Defect Structure during Surface Indentation, Phys. Rev. B, 1998, vol. 58, no. 17, pp. 11085–11088.ADSCrossRefGoogle Scholar
  30. 30.
    Hatano, T. and Matsui, H., Molecular Dynamics Investigation of Dislocation Pinning by a Nanovoid in Copper, Phys. Rev. B, 2005, no. 72, p. 094105.ADSCrossRefGoogle Scholar
  31. 31.
    Molnar, D., Binkele, P., Hocker, S., and Schmauder, S., Atomistic Multiscale Simulations on the Anisotropic Tensile Behaviour of Copper-Alloyed a-Iron at Different States of Thermal Ageing, Philos. Mag., 2012, vol. 92, no. 5, pp. 586–607.ADSCrossRefGoogle Scholar
  32. 32.
    Molnar, D., Binkele, P., Hocker, S., and Schmauder, S., Multiscale Modelling of Nano Tensile Tests for Different Cu-Precipitaion States in α-Fe, Proc. V Int. Conf. Multiscale Materials Modelling, Gumbsch, P. and van der Giessen, E., Eds., Freiburg: Fraunhofer Inst. Mech. Mater., 2010, pp. 235–239.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • W. Verestek
    • 1
    Email author
  • A.-P. Prskalo
    • 1
  • M. Hummel
    • 1
  • P. Binkele
    • 1
  • S. Schmauder
    • 1
  1. 1.Institute for Materials Testing, Materials Science and Strength of MaterialsUniversity of StuttgartStuttgartGermany

Personalised recommendations