Physical Mesomechanics

, Volume 18, Issue 1, pp 13–23 | Cite as

Material frame representation of equivalent stress tensor for discrete solids

  • V. A. Kuzkin
  • A. M. Krivtsov
  • R. E. Jones
  • J. A. Zimmerman


In this paper, we derive expressions for equivalent Cauchy and Piola stress tensors that can be applied to discrete solids and are exact for the case of homogeneous deformation. The main principles used for this derivation are material frame formulation, long wave approximation and decomposition of particle motion into continuum and thermal parts. Equivalent Cauchy and Piola stress tensors for discrete solids are expressed in terms of averaged interparticle distances and forces. No assumptions about interparticle forces are used in the derivation, thereby ensuring our expressions are valid irrespective of the choice of interatomic potential used to model the discrete solid. The derived expressions are used for calculation of the local Cauchy stress in several test problems. The results are compared with prediction of the classical continuum definition (force per unit area) as well as existing discrete formulations (Hardy, Lucy, and Heinz-Paul-Binder stress tensors). It is shown that in the case of homogeneous deformations and finite temperatures the proposed expression leads to the same values of stresses as classical continuum definition. Hardy and Lucy stress tensors give the same result only if the stress is averaged over a sufficiently large volume. Thus, given the lack of sensitivity to averaging volume size, the derived expressions can be used as benchmarks for calculation of stresses in discrete solids.


Cauchy stress tensor material frame formulation molecular dynamics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mechanics-From Discrete to Continuous, Fomin, V.M., Andreev, A.N., et al., Eds., Novosibirsk: Izd. SO RAN, 2008.Google Scholar
  2. 2.
    Hoover, W.G., Molecular Dynamics: Lecture Notes in Physics, Berlin: Springer, 1986.Google Scholar
  3. 3.
    Psakhie, S.G., Korostelev, S.Yu., Smolin, A.Yu., Shilko, E.V., Dmitriev, A.I., Horie, Y., Ostermeyer, G.P., Pegel, M., Blatnik, S., and Zavsek, S., Movable Cellular Automata Method for Simulating Materials with Mesostructure, Theor. Appl. Fract. Mech., 2001, vol. 37, no. 13, pp. 311–334.CrossRefGoogle Scholar
  4. 4.
    Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, New York: Dover, 1944.zbMATHGoogle Scholar
  5. 5.
    Lurie, A.I., Nonlinear Theory of Elasticity, Amsterdam: North-Holland, 1990.zbMATHGoogle Scholar
  6. 6.
    Goldstein, R.V. and Morozov, N.F., Mechanics of Deformation and Fracture of Nanomaterials and Nanotechnology, Phys. Mesomech., 2007, vol. 10, no. 5–6, pp. 235246.Google Scholar
  7. 7.
    Panin, V.E. and Egorushkin, V.E., Nanostructural States in Solids, Phys. Met. Metallogr., 2010, vol. 110, no. 5, pp. 464–473.CrossRefADSGoogle Scholar
  8. 8.
    Alyokhin, V.V., Annin, B.D., Babichev, A.V., and Korobeynikov, S.N., Free Vibrations and Buckling of Graphene Sheets, Dokl. Phys., 2013, vol. 58, no. 11, pp. 487–490.CrossRefADSGoogle Scholar
  9. 9.
    Bunch, J.S., van der Zande, A.M., Verbridge, S.S., Frank, I.W., Tanenbaum, D.M., Parpia, J.M., Craighead, H.G., and McEuen, P.L., Electromechanical Resonators from Graphene Sheets, Science, 2007, pp. 315–490.Google Scholar
  10. 10.
    Liu, W.K., Qian, D., Gonella, S., Li, S., Chen, W., and Chirputkar, S., Multiscale Methods for Mechanical Science of Complex Materials: Bridging from Quantum to Stochastic Multiresolution Continuum, Int. J. Numer. Meth. Engng., 2010, vol. 83, p. 961080.Google Scholar
  11. 11.
    Clausius, R.J.E., On a Mechanical Theorem Applicable to Heat, Phil. Mag., 1870, vol. 40, pp. 122–127.Google Scholar
  12. 12.
    Irving, J.H. and Kirkwood, J.G., The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics, J. Chem. Phys., 1950, vol. 18, pp. 817829.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Lutsko, J.F., Stress and Elastic Constants in Anisotropic Solids: Molecular Dynamics Techniques, J. Appl. Phys., 1988, vol. 64, pp. 1152–1154.CrossRefADSGoogle Scholar
  14. 14.
    Kunin, I.A., Theory of Elastic Media with Microstructure, Berlin: Springer, 1982.CrossRefGoogle Scholar
  15. 15.
    Admal, N.C. and Tadmor, E.B., A Unified Interpretation of Stress in Molecular Systems, J. Elast., 2011, vol. 100, no. 1–2, pp. 63–143.MathSciNetGoogle Scholar
  16. 16.
    Hardy, R.J., Formulae for Determining Local Properties in Molecular-Dynamics Simulations: Shock Waves, J. Chem. Phys., 1982, vol. 76, pp. 622–628.CrossRefADSGoogle Scholar
  17. 17.
    Webb, E.B., Zimmerman, J.A., and Seel, S.C., Reconsideration of Continuum Thermomechanical Quantities in Atomic Scale Simulations, J. Math. Mech. Sol., 2008, vol. 13, pp. 221–266.CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Zimmerman, J.A., Webb, E.B., Hoyt, J.J., Jones, R.E., Klein, P.A., and Bammann, D.J., Calculation of Stress in Atomistic Simulation, Model. Simul. Mater. Sci. Eng., 2004, vol. 12, pp. S319–S332.CrossRefADSGoogle Scholar
  19. 19.
    Zimmerman, J.A., Jones, R.E., and Templeton, J.A., A Material Frame Approach for Evaluating Continuum Variables in Atomistic Simulations, J. Comp. Phys., 2010, vol. 229, pp. 2364–2389.CrossRefADSzbMATHMathSciNetGoogle Scholar
  20. 20.
    Lucy, L.B., A Numerical Approach to the Testing of the Fission Hypothesis, Astronomical J., 1977, vol. 82, pp. 1013–1024.CrossRefADSGoogle Scholar
  21. 21.
    Hoover, W.G. and Hoover, C.G., New Trends in Statistical Physics: Festschrift in Honor of Professor Dr. Leopoldo Garcia-Colin’s 80th Birthday, Macias, A. and Dagdug, L., Eds., Singapore: World Scientific, 2010.Google Scholar
  22. 22.
    Xiao, S.P. and Belytschko, T., A Bridging Domain Method for Coupling Continua with Molecular Dynamics, Comp. Meth. Appl. Mech. Eng., 2004, vol. 193, pp. 1645–1669.CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Born, M. and Huang, K., Dynamical Theory of Crystal Lattices, Oxford: Clarendon Press, 1988.zbMATHGoogle Scholar
  24. 24.
    Krivtsov, A.M., Influence of Velocities Dispersion on Spall Strength of Material, Z. Angew. Math. Mech., 1999, vol. 79, pp. 511–512.Google Scholar
  25. 25.
    Krivtsov, A.M., From Nonlinear Oscillations to Equation of State in Simple Discrete Systems, Chaos, Solitons Fractals, 2003, vol. 17, pp. 79–87.CrossRefADSzbMATHGoogle Scholar
  26. 26.
    Krivtsov, A.M. and Kuzkin, V.A., Microscopic Derivation of the Equation of State for Perfect Crystals, Proc. 6th Int. Conf. on Engineering Computational Technology, Papadrakakis, M. and Topping, B.H.V., Eds., Stirlingshire: Civil-Comp Press, 2008, Paper 145.Google Scholar
  27. 27.
    Krivtsov, A.M. and Kuzkin, V.A., Derivation of Equations of State for Perfect Crystals with Simple Structure, Mech. Solids, 2011, vol. 46, no. 3, pp. 387–399.CrossRefGoogle Scholar
  28. 28.
    Zhou, M., Thermomechanical Continuum Representation of Atomistic Deformation at Arbitrary Size Scales, Proc. R. Soc. A, 2005, vol. 461, pp. 3447–3472.ADSGoogle Scholar
  29. 29.
    Ulz, M.H., Mandadapu, K.K., and Papadopoulos, P., On the Estimation of Spatial Averaging Volume for Determining Stress Using Atomistic Methods, Model. Simul. Mater. Sci. Eng., 2013, vol. 21, pp. 15010–15015.CrossRefADSGoogle Scholar
  30. 30.
    Arroyo, M. and Belytschko, T., Finite Crystal Elasticity of Carbon Nanotubes Based on the Exponential Cauchy-Born Rule, Phys. Rev. B, 2004, vol. 69, p. 115415.CrossRefADSGoogle Scholar
  31. 31.
    Heinz, H., Paul, W., and Binder, K., Calculation of Local Pressure Tensors in Systems with Many-Body Interactions, Phys. Rev. E, 2005, vol. 72, p. 066704.CrossRefADSMathSciNetGoogle Scholar
  32. 32.
    Podolskaya, E.A., Krivtsov, A.M., Panchenko, A.Yu., and Tkachev, P.V., Stability of Ideal Infinite Two Dimensional Crystal Lattice, Dokl. Phys., 2012, vol. 57, no. 2, pp. 92–95.CrossRefADSGoogle Scholar
  33. 33.
    Le-Zakharov, A.A. and Krivtsov, A.M., Molecular Dynamics Investigation of Heat Conduction in Crystals with Defects, Dokl. Phys., 2008, vol. 53, no. 5, pp. 261–264.CrossRefADSzbMATHGoogle Scholar
  34. 34.
    Kuzkin, V.A., Interatomic Force in Systems with Multi-body Interactions, Phys. Rev. E, 2010, vol. 82, p. 016704.CrossRefADSGoogle Scholar
  35. 35.
    Kosevich, A.M., The Crystal Lattice: Phonons, Solitons, Dislocations, Berlin: Wiley, 1999.CrossRefzbMATHGoogle Scholar
  36. 36.
    Kaski, K., Kuronen, A., and Robles, M., Computer Simulation Studies, Condensed Matter Physics XIV, Landau, D.P., Levis, S.P., and Schüttler, H.B., Eds., Berlin: Springer, 2001, pp. 12–26.Google Scholar
  37. 37.
    Eringen, A.C., Edge Dislocation in Nonlocal Elasticity, Int. J. Eng. Sci., 1977, vol. 15, no. 3, pp. 177–183.CrossRefzbMATHGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • V. A. Kuzkin
    • 1
    • 2
  • A. M. Krivtsov
    • 1
    • 2
  • R. E. Jones
    • 3
  • J. A. Zimmerman
    • 3
  1. 1.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Saint Petersburg State Polytechnical UniversitySt. PetersburgRussia
  3. 3.Sandia National LaboratoriesLivermoreUSA

Personalised recommendations