Advertisement

Doklady Physics

, Volume 64, Issue 10, pp 384–388 | Cite as

Effect of the Heating Scheme of Heterogeneous Droplets on the Characteristics of Micro-Explosion Fragmentation

  • D. V. AntonovEmail author
  • A. K. RebrovEmail author
  • P. A. StrizhakEmail author
TECHNICAL PHYSICS
  • 13 Downloads

Abstract

According to experimental results, a comparison of sizes of child droplets after micro-explosion fragmentation of water–Diesel droplets is conducted. Convective, conductive, or radiative heat exchange dominated in each experiment. The temperature of the medium and the relative volume concentration of the flammable liquid are varied in the ranges from 100–450°С and from 10–90 vol %. The ratios of the sizes of the droplets formed to the sizes of the original ones are established. The conditions are shown under which it is possible to increase the total surface area of evaporation of a liquid by tenfold or more using the micro-explosion of droplets.

Notes

FUNDING

This study was supported by a grant of the President of the Russian Federation, project no. MD-314.2019.8.

REFERENCES

  1. 1.
    Y. Z. Zeng and C. F. Lee, Proc. Combust. Inst. 31, 2185 (2007).   https://doi.org/10.1016/j.proci.2006.07.237 CrossRefGoogle Scholar
  2. 2.
    H. Watanabe, Y. Matsushita, H. Aoki, and T. Miura, Combust. Flame 157, 839 (2010).  https://doi.org/10.1016/j.combustflame.2010.01.013 CrossRefGoogle Scholar
  3. 3.
    J. Shinjo, J. Xia, L. C. Ganippa, and A. Megaritis, Phys. Fluids 26, 103302 (2014).  https://doi.org/10.1063/1.4897918 ADSCrossRefGoogle Scholar
  4. 4.
    W. B. Fu, L. Y. Hou, L. Wang, and F. H. Ma, Fuel Process. Technol. 79, 107 (2002).  https://doi.org/10.1016/S0378-3820(02)00106-6 CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, Y. Huang, R. Huang, S. Huang, Y. Ma, S. Xu, and Z. Wang, Appl. Therm. Eng. 133, 633 (2018).   https://doi.org/10.1016/j.applthermaleng.2018.01.096 ADSCrossRefGoogle Scholar
  6. 6.
    S. S. Sazhin, O. Rybdylova, C. Crua, M. Heikal, M. A. Ismael, Z. Nissar, and A. R. B. A. Aziz, Int. J. Heat Mass Transfer 131, 815 (2019).   https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.065 CrossRefGoogle Scholar
  7. 7.
    Z. Dai and G. M. Faeth, Int. J. Multiphase Flow 27, 217 (2001).  https://doi.org/10.1016/S0301-9322(00)00015-X CrossRefGoogle Scholar
  8. 8.
    D. Antonov, J. Bellettre, D. Tarlet, P. Massoli, O. Vysokomornaya, and M. Piskunov, Energies 11, 3307 (2018).  https://doi.org/10.3390/en11123307 CrossRefGoogle Scholar
  9. 9.
    E. Mura, C. Josset, K. Loubar, G. Huchet, and J. Bellettre, Atomization Sprays 20, 791 (2010).  https://doi.org/10.1615/AtomizSpr.v20.i9.40 CrossRefGoogle Scholar
  10. 10.
    V. E. Nakoryakov, R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Dokl. Phys. 63, 462 (2018).  https://doi.org/10.1134/S1028335818110101 ADSCrossRefGoogle Scholar
  11. 11.
    R. S. Volkov and P. A. Strizhak, Exp. Therm. Fluid Sci. 97, 392 (2018).  https://doi.org/10.1016/j.expthermflusci.2018.05.007 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.National Research Tomsk Polytechnic University TomskRussia
  2. 2.Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations