Advertisement

Doklady Physics

, Volume 64, Issue 3, pp 139–143 | Cite as

Variations of Cosmogenic Radionuclide Production Rates in Chondrites of Known Orbits

  • G. K. UstinovaEmail author
  • V. A. AlexeevEmail author
ASTRONOMY, ASTROPHYSICS, COSMOLOGY

Abstract

The results of multiyear investigations of cosmogenic radionuclide production rates along the orbits of 42 chondrites that fell to the Earth between 1959 and 2016 are presented. They constitute a long set of homogeneous data, statistical smoothing of which demonstrates some main regularities of the distribution and variation of the galactic cosmic rays (GCR) with energy >100 MeV in the internal (<5 AU) heliosphere. This set is exclusive, and it has timeless importance for all the future investigations of the magneto-hydrodynamic peculiarities of the GCR solar modulation mechanism. Analysis of the 26Al contents in ten chondrites of known orbits allowed us to find the spatial profile of the GCR intensity (E > 100 MeV), averaged over a 1 My in the internal heliosphere, testifying to continual development and dissipation of a layer of the solar wind magnetic irregularities, which efficiently modulates cosmic radiation. It suggests constancy of the magneto-hydrodynamic environment in the Solar System for at least the last million years.

Notes

ACKNOWLEDGMENTS

This work was supported in part by the Presidium of the Russian Academy of Sciences, Basic Research Program no. 28.

REFERENCES

  1. 1.
    A. K. Lavrukhina and G. K. Ustinova, Meteorite Probes of Cosmic Ray Variations (Nauka, Moscow, 1990) [in Russian].Google Scholar
  2. 2.
    V. A. Alexeev and G. K. Ustinova, Geokhimiya, No. 5, 467 (2006).Google Scholar
  3. 3.
    G. K. Ustinova, Doklady Akademii Nauk 471 (3), 289 (2016).Google Scholar
  4. 4.
    M. M. M. Meier, Meteorites with Photographic Orbits, http://www.meteoriteorbits.info (2016).Google Scholar
  5. 5.
    L. D. Landau and E. M. Lifshitch, Mechanics, Moscow: Nauka, (1988).Google Scholar
  6. 6.
    L. Usoskin and P. Desorgher, Acta Geophys. 57 (1), 88 (2009).ADSCrossRefGoogle Scholar
  7. 7.
    G. A. Bazilevskaya, M. S. Kalinin, M. B. Krainev, et al., Proc. 33rd Intern. Cosm. Ray Conf., 2013. Rio de-Janeiro, The Astroparticle Phys. Conf. arXiv: 1411.7534v.1 [astroph. SR] 27 Nov. (2014).Google Scholar
  8. 8.
    R. B. McKibben, J. J. O’Gallagher, K. R. Pyle, and J. A. Simpson, Proc. 15th Intern. Cosm. Ray Conf. Plovdiv 3, 240 (1977).Google Scholar
  9. 9.
    D. Venkatesan, R. B. Decker, and S. M. Krimigis, Proc. 20th Intern. Cosm. Ray Conf. Moscow 3, 385 (1987).Google Scholar
  10. 10.
    E. N. Parker Cosmic Magnetic Fields. Oxford: Clarendon press (1979).Google Scholar
  11. 11.
    A. K. Lavrukhina and G. K. Ustinova, Adv. Space Res. 1 (3), 143 (1981).ADSCrossRefGoogle Scholar
  12. 12.
    A. K. Lavrukhina and G. K. Ustinova, Earth and Planet. Sci. Letts. 15 (4), 347 (1972).ADSCrossRefGoogle Scholar
  13. 13.
    V. A. Alexeev, M. Laubenstein, P. P. Povinec, and G. K. Ustinova, Adv. Space Res. 56, 766 (2015).  https://doi.org/10.1016/j.asr.2015.05.004 ADSCrossRefGoogle Scholar
  14. 14.
    R. B. McKibben, J. J. Connell, C. Lopate, et al., Ann. Geophys. 21, 1217 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    A. K. Lavrukhina and G. K. Ustinova, Nature 232 (5311), 462 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Geochemistry and Analytical Chemistry (GEOKHY), Russian Academy of ScienceMoscowRussia

Personalised recommendations