Doklady Physics

, Volume 63, Issue 12, pp 513–516 | Cite as

Thermal Stability of Glass with Simulators of Chloride Highly Radioactive Wastes

  • S. V. YudintsevEmail author
  • A. A. Shiryaev


High temperature behavior of sodium–aluminum fluorophosphate glass—a potential matrix for immobilisation of waste salt electrolyte from pyrochemical reprocessing of irradiated nuclear fuel (INF) has been studied. The glass crystallizes between 430 and 640°C with formation of phosphate phases, which dissolve above 640°C leading to homogenization of the glass. Similar transformations of the glass matrix due to heating from the decay of short-lived fission products may have a negative effect on properties of vitrified radioactive chloride wastes during storage in a repository.



  1. 1.
    A. A. Kopyrin, A. I. Karelin, and V. A. Karelin, Technology for the Production and Radiochemical Reprocessing of Nuclear Fuel (Atomenergoizdat, Moscow, 2006) [in Russian].Google Scholar
  2. 2.
    A. A. Lizin, S. V. Tomilin, O. E. Gnevashov, A. N. Lukinykh, and A. I. Orlova, Radiochemistry (Moscow, Russ. Fed.) 54 (6), 542 (2012).Google Scholar
  3. 3.
    S. V. Tomilin, A. N. Lukinykh, and A. A. Lizin, At. Energ. 102 (3), 217 (2007).Google Scholar
  4. 4.
    G. Leturcq, A. Grandjean, D. Rigaud, P. Perouty, and M. Charlot, J. Nucl. Mater. 347 (1), 1 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    M. A. Lewis, M. Hash, and D. Glandorf, Mater. Res. Soc. Symp. Proc. 465, 433 (1996).CrossRefGoogle Scholar
  6. 6.
    K. L. Nash, Ch. Madic, J. N. Mathur, and J. Lacquement, in Chemistry of the Actinide and Transactinide Elements, Ed. by L. R. Morss, N. M. Edelstein, and J. Fuger (Springer, Dordrecht, 2010), Vol. 4, pp. 2622–2798.Google Scholar
  7. 7.
    V. V. Orlov, A. I. Filin, A. V. Lopatkin, A. G. Glazov, L. P. Sukhanov, V. I. Volk, P. P. Poluektov, O. A. Ustinov, M. T. Vorontsov, V. F. Leontiev, and R. S. Karimov, Prog. Nucl. Energy 47 (1), 171 (2005).CrossRefGoogle Scholar
  8. 8.
    Pyrochemical Separations in Nuclear Applications, A    Status Report. OECD NEA. Cited October 15, 2018.Google Scholar
  9. 9.
    Yu. G. Lavrinovich, M. A. Kuzin, M. V. Kormilitsyn, S. V. Tomilin, E. Yu. Gribakin, and L. V. Zakharova, At. Energy 101 (6), 894 (2006).CrossRefGoogle Scholar
  10. 10.
    PDF-2. International Center for Diffraction Data. Cited October 15, 2018.Google Scholar
  11. 11.
    Phosphate Glasses with Radioactive Wastes, Ed. by A. A. Vashmana and A. S. Polyakova (TsNIIatominform, Moscow, 1997) [in Russian].Google Scholar
  12. 12.
    E. R. Vance, J. Davis, K. Olufson, I. Chironi, I. Karatchevtseva, and I. Farnan, J. Nucl. Mater. 420 (1), 396 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    K. V. Martynov, A. N. Nekrasov, A. R. Kotelnikov, A. A. Shiryaev, S. V. Stefanovsky, Glass Phys. Chem. 44 (6), 591 (2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations