Advertisement

Doklady Physics

, Volume 63, Issue 7, pp 307–311 | Cite as

Finite-Dimensional Approximations of the Steklov–Poincaré Operator in Periodic Elastic Waveguides

  • S. A. Nazarov
MECHANICS
  • 17 Downloads

Abstract

For anisotropic elastic waveguides with cylindrical or periodic outlets to infinity, artificial integro-differential conditions are developed at the end face of a truncated waveguide, which simulate the Steklov–Poincaré operator for scalar problems. Asymptotically sharp error estimates are derived in the definition of both the elastic fields themselves in the waveguide and the corresponding scattering coefficients.

Notes

REFERENCES

  1. 1.
    S. V. Tsynkov, Appl. Numer. Math. 27, 465 (1998).MathSciNetCrossRefGoogle Scholar
  2. 2.
    V. I. Lebedev and V. I. Agoshkov, Poincaré–Steklov Operators and Their Applications in Analysis (Otd. Vychisl. Mat. Akad. Nauk SSSR, Moscow, 1983) [in Russian].zbMATHGoogle Scholar
  3. 3.
    S. A. Nazarov, Sb. Math. 204, 1639 (2013).MathSciNetCrossRefGoogle Scholar
  4. 4.
    V. Baronian, A.-S. Bonnet-Ben Dhia, S. Fliss, and A. Tonnoir, Wave Motion 64, 13 (2016).MathSciNetCrossRefGoogle Scholar
  5. 5.
    M. Lenoir and A. Tounsi, SIAM J. Numer. Anal. 25 (4), 629 (1988).CrossRefGoogle Scholar
  6. 6.
    S. A. Nazarov and B. A. Plamenevsky, Elliptic Problems in Domains with Piecewise Smooth Boundaries (Walter de Gruyter, Berlin, New York, 1994).CrossRefzbMATHGoogle Scholar
  7. 7.
    S. A. Nazarov, Sb. Math. 205 (7), 953 (2014).MathSciNetCrossRefGoogle Scholar
  8. 8.
    W. G. Mazja, S. A. Nasarow, and B. A. Plamenewski, Asymptotische Theorie elliptischer Randwertaufgaben in singular gestorten Gebieten (Akademie, Berlin, 1991). Engl. transl.: V. Maz’ya, S. Nazarov, and B. Plamenevskij, Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains (Birkhäuser, Basel, 2000), Vols. 1, 2.Google Scholar
  9. 9.
    V. Baronian and A.-S. Bonnet-Ben Dhia, J. Comput. Appl. Math. 234, 1945 (2010).MathSciNetCrossRefGoogle Scholar
  10. 10.
    N. A. Umov, Equations of Motion of Energy in Bodies (Tipogr. Ul’rikha i Shul’tse, Odessa, 1874) [in Russian].Google Scholar
  11. 11.
    L. I. Mandelstam, Lectures on Optics, Relativity Theory and Quantum Mechanics (Akad. Nauk SSSR, Moscow, 1947), Vol. 2 [in Russian].Google Scholar
  12. 12.
    I. I. Vorovich and V. A. Babeshko, Dynamic Mixed Problems of Elasticity Theory for Nonclassical Domains (Nauka, Moscow, 1979) [in Russian].zbMATHGoogle Scholar
  13. 13.
    I. M. Gel’fand, Dokl. Akad. Nauk SSSR 73, 1117 (1950).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Faculty of Mathematics and Mechanics, St. Petersburg State UniversityStaryi PetergofSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg State Polytechnic UniversitySt. PetersburgRussia
  3. 3.Institute for Problems in Mechanical Engineering, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations