Advertisement

Doklady Physics

, Volume 63, Issue 6, pp 235–238 | Cite as

Flow Structure in a Ranque−Hilsch Vortex Tube

  • D. G. Akhmetov
  • T. D. Akhmetov
  • V. A. Pavlov
Mechanics

Abstract

The structure of twisted flow in a Ranque−Hilsch vortex tube is investigated experimentally by modeling gas flow with an incompressible fluid flow. The velocity field is measured with a laser Doppler anemometer in the entire volume of the vortex chamber. The streamline pattern, which gives a complete presentation of the flow structure in the Ranque−Hilsch tube, is plotted in the axial section of the chamber. The resulting streamline pattern can serve as a basis for explaining the physical mechanism of the Ranque effect.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. J. Ranque. J. Phys. Radium IV/VII (6), 112 (1933).Google Scholar
  2. 2.
    R. Hilsch, Rev. Sci. Instrum. 18 (2), 108 (1947).ADSCrossRefGoogle Scholar
  3. 3.
    A. P. Merkulov, Vortex Effect and Its Application in Engineering (Mashinostroenie, Moscow, 1969) [in Russian].Google Scholar
  4. 4.
    Sh. A. Piralishvili, V. M. Polyaev, and M. N. Sergeev, Vortex Effect. Experiment, Theory, Technical Solution (Energomash, Moscow, 2000) [in Russian].Google Scholar
  5. 5.
    P. Promvonge and S. Eiamsa-ard, Renew. Sustain. Energy Rev. 12, 1822 (2008).CrossRefGoogle Scholar
  6. 6.
    S. Subudhi and M. Sen, Renew. Sustain. Energy Rev. 52, 172 (2015).CrossRefGoogle Scholar
  7. 7.
    A. F. Gutsol, Usp. Fiz. Nauk 167 (6), 665 (1997).CrossRefGoogle Scholar
  8. 8.
    R. M. Milton, Industrial Eng. Chem. 38 (5), 5 (1946).CrossRefGoogle Scholar
  9. 9.
    E. H. Otten, Engineering 186, 154 (1958).Google Scholar
  10. 10.
    A. K. Rebrov and P. A. Skovorodko, Proc. 21st Intern. Symp. on Rarefied Gas Dynamics, Marseille, Vol. II, p. 221 (1998).Google Scholar
  11. 11.
    Yu. I. Dubnishchev, V. G. Meledin, V. A. Pavlov, and N. I. Yavorskii, Teplofiz. Aeromekh. 10 (4), 587 (2003).Google Scholar
  12. 12.
    A. P. Merkulov, Zh. Tekh. Fiz. 26 (6), 1271 (1956).Google Scholar
  13. 13.
    C. de Boor. A Practical Guide to Splines. Applied Mathematical Science (Springer Verlag) 27, 348 (1978).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. G. Akhmetov
    • 1
  • T. D. Akhmetov
    • 2
  • V. A. Pavlov
    • 3
  1. 1.Lavrent’ev Institute of Hydrodynamics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Budker Institute of Nuclear Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Kutateladze Institute of Thermal Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations