Doklady Physics

, Volume 63, Issue 2, pp 64–69 | Cite as

The Fine Transverse Structure of a Vortex Flow Beyond the Edge of a Disc Rotating in a Stratified Fluid

  • Yu. D. Chashechkin
  • R. N. Bardakov
Technical Physics


By the methods of schlieren visualization, the evolution of elements of the fine structure of transverse vortex loops formed in the circular vortex behind the edge of a disk rotating in a continuously stratified fluid is traced for the first time. An inhomogeneous distribution of the density of a table-salt solution in a basin was formed by the continuous-squeezing method. The development of periodic perturbations at the outer boundary of the circular vortex and their transformation at the vortex-loop vertex are traced. A slow change in the angular size of the structural elements in the supercritical-flow mode is noted.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Tesla, Fluid Propulsion. U.S. Patent 1061142, May 6, 1913.Google Scholar
  2. 2.
    L. X. Huanga, K. Kumar, and A. S. Mujumdarc, Chem. Eng. and Processing 45, 461 (2006).CrossRefGoogle Scholar
  3. 3.
    S. B. Dalziel, M. D. Patterson, C. P. Caulfield, and S. Le Brun, J. Fluid Mech. 689, 3 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    H. I. Andersson, E. de Korte, and R. Meland, Fluid Dyn. Res. 28, 75 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    W. Suchecki, Chem. Process Eng. 35 (1), 3 (2014).CrossRefGoogle Scholar
  6. 6.
    T. Von Karman, ZAMM 1 (4), 233 (1921).ADSCrossRefGoogle Scholar
  7. 7.
    G. Shlichting, Boundary-Layer Theory (Nauka, Moscow, 1969) [in Russian].Google Scholar
  8. 8.
    N. Gregory, J. T. Stuart, and W. S. Walker, Phil. Trans. Roy. Soc. London A 248, 155 (1955).ADSCrossRefGoogle Scholar
  9. 9.
    H. Furukawa, H. Tsutsui, K. Aoi, T. Watanabe, and I. Nakamura, J. Phys. Conf. Ser. 14, 220 (2005).CrossRefGoogle Scholar
  10. 10.
    Y. Kohama and C. Takamadate, Acta Mech. 35, 71 (1980).ADSCrossRefGoogle Scholar
  11. 11.
    G. M. Sisoev, D. B. Goldgof, and V. N. Korzhova, Phys. Fluids 2, 052106 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    E. Appelquist, S. Imayama, H. Alfredsson, P. Schlatter, and R. J. Lingwood, Europ. J. Mech. B: Fluids 55, 170 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    F. Y. Moulin and J.-B. Flor, J. Fluid Mech. 516, 155 (2004).ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    R. N. Bardakov and Yu. D. Chashechkin, Fluid Dyn. 52 (3), 337 (2017).MathSciNetCrossRefGoogle Scholar
  15. 15.
    Yu. D. Chashechkin, Math. Modeling and Optim. Complex Struct. Springer Ser. Comput. Methods in Appl. Sci. 40, 61 (2016).MathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Ishlinskii Institute for Problems in MechanicsRussian Academy of SciencesMoscowRussia

Personalised recommendations