Doklady Physics

, Volume 62, Issue 5, pp 262–265 | Cite as

New cases of integrable systems with dissipation on a tangent bundle of a multidimensional sphere

Mechanics
  • 9 Downloads

Abstract

The integrability of certain classes of dynamic systems arising in the dynamics of a multidimensional solid and in the dynamics of a point on a tangent bundle of a multidimensional sphere is shown. In this case, the force fields under consideration have the so-called variable dissipation with zero average and generalize previously considered fields.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Shamolin, Reviews of Science and Thechnology. Contemporary Mathematics and Its Applications. Thematic Reviews (VINITI, Moscow, 2013), Vol. 125, pp. 5–254 [in Russian].Google Scholar
  2. 2.
    M. V. Shamolin, Fundam. Prikl. Matem. 20 (4), 3 (2015).Google Scholar
  3. 3.
    M. V. Shamolin, Fundam. Prikl. Matem. 14 (3), 3 (2008).Google Scholar
  4. 4.
    S. V. Manakov, Funkts. Anal. Pril. 10 (4), 93 (1976).Google Scholar
  5. 5.
    A. P. Veselov, Dokl. Akad. Nauk SSSR 270 (6), 1298 (1983).MathSciNetGoogle Scholar
  6. 6.
    O. I. Bogoyavlenskii, Dokl. Akad. Nauk SSSR 287 (5), 1105 (1986).ADSMathSciNetGoogle Scholar
  7. 7.
    M. V. Shamolin, Usp. Mat. Nauk 53 (3), 209 (1998).CrossRefGoogle Scholar
  8. 8.
    B. V. Shabat, Introduction in Complex Analysis (Nauka, Moscow, 1987) [in Russian].Google Scholar
  9. 9.
    E. Kamke, Handbook of Ordinary Differential Equations (Nauka, Moscow, 1971) [in Russian].Google Scholar
  10. 10.
    M. V. Shamolin, Dokl. Phys. 58 (11), 496 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    M. V. Shamolin, Dokl. Phys. 60 (10), 471 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Moscow State UniversityMoscowRussia

Personalised recommendations