Doklady Physics

, Volume 61, Issue 12, pp 625–629 | Cite as

New cases of integrable systems with dissipation on tangent bundles of two- and three-dimensional spheres

Mechanics

Abstract

Integrability in elementary functions is demonstrated for some classes of dynamic systems on tangent bundles of two- and three-dimensional spheres. The force fields possess the so-called variable dissipation with a zero mean and generalize those considered earlier.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Shamolin, Methods of Analysis of Dynamic Systems with Variable Dissipation in Solid Body Dynamics (Ekzamen, Moscow, 2007) [in Russian].Google Scholar
  2. 2.
    M. V. Shamolin, in Itogi Nauki Tekh., Ser.: Sovr. Mat. Prilozh. (VINITI, Moscow, 2013), Vol. 125, pp. 3–251 [in Russian].Google Scholar
  3. 3.
    M. V. Shamolin, Dokl. Phys. 58, 496 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    M. V. Shamolin, J. Math. Sci. 162, 741 (2009).CrossRefGoogle Scholar
  5. 5.
    M. V. Shamolin, Russ. Math. Surv. 53, 637 (1998).CrossRefGoogle Scholar
  6. 6.
    B. V. Shabat, Introduction to Complex Analysis (Nauka, Moscow, 1987) [in Russian].Google Scholar
  7. 7.
    E. Kamke, Handbook of Ordinary Differential Equations (Nauka, Moscow, 1971).Google Scholar
  8. 8.
    M. V. Shamolin, Dokl. Phys. 45, 632 (2000).ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    M. V. Shamolin, Dokl. Phys. 54, 155 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Research Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations