Doklady Physics

, Volume 60, Issue 10, pp 471–475 | Cite as

Complete list of the first integrals of dynamic equations of a multidimensional solid in a nonconservative field under the assumption of linear damping

Mechanics

Abstract

The dynamic part of equations of motion is investigated for a dynamically symmetric multidimensional solid in a nonconservative force field in the presence of the following force in the case when the solid is under the action of a pair of forces. In this case, there is additional linear damping in the system. The new case of complete integrability is found in transcendental (in the sense of complex analysis) functions, which are expressed through a finite combination of elementary functions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Manakov, Funktsion. Analiz Prilozh. 10 (4), 93 (1976).MATHMathSciNetGoogle Scholar
  2. 2.
    A. P. Veselov, Dokl. Akad. Nauk 270 (6), 1298 (1983).MathSciNetGoogle Scholar
  3. 3.
    O. I. Bogoyavlenskii, Dokl. Akad. Nauk 287 (5), 1105 (1986).MathSciNetADSGoogle Scholar
  4. 4.
    M. V. Shamolin, Math. Models Comput. Simul. 7 (4), 389 (2015).CrossRefGoogle Scholar
  5. 5.
    M. V. Shamolin, in Overall Results of Science and Technology. Thematical Reviews (VINITI, Moscow, 2013), Vol. 125, pp. 5–254 [in Russian].Google Scholar
  6. 6.
    M. V. Shamolin, Proc. Petrovskii Seminar (Izd-vo MGU, Moscow, 2014) [in Russian].Google Scholar
  7. 7.
    M. V. Shamolin, Dokl. Phys. 56 (9), 498 (2011).MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    M. V. Shamolin, Dokl. Phys. 57 (2), 78 (2012).MathSciNetCrossRefADSGoogle Scholar
  9. 9.
    M. V. Shamolin, Dokl. Phys. 57 (6), 250 (2012).CrossRefADSGoogle Scholar
  10. 10.
    V. V. Trofimov and A. T. Fomenko, Algebra and Geometry of Integrable Hamiltonian Differential Equations (Faktorial, Moscow, 1995) [in Russian].MATHGoogle Scholar
  11. 11.
    S. A. Chaplygin, in Complete Collection of Works (Izdvo AN SSSR, Leningrad, 1933), Vol. 1, pp. 133–135 [in Russian].Google Scholar
  12. 12.
    M. V. Shamolin, Fundam. i Prikl. Matematika 14 (3), 3 (2008).Google Scholar
  13. 13.
    M. V. Shamolin, Dokl. Phys. 59 (8), 375 (2014).MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    M. V. Shamolin, Dokl. Phys. 60 (1), 34 (2015).MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Research, Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations