Doklady Physics

, Volume 60, Issue 4, pp 183–187 | Cite as

Complete list of first integrals of dynamic equations for a multidimensional solid in a nonconservative field

Mechanics
  • 17 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Manakov, Funktsion. Analiz Prilozh. 10(4), 93 (1976).MATHMathSciNetGoogle Scholar
  2. 2.
    A. P. Veselov, Dokl. Akad. Nauk 270(6), 1298 (1983).MathSciNetGoogle Scholar
  3. 3.
    O. I. Bogoyavlenskii, Dokl. Akad. Nauk 287(5), 1105 (1986).ADSMathSciNetGoogle Scholar
  4. 4.
    M. V. Shamolin, Vestn. MSU Ser. Mat. Mekh., No. 1, 52 (1992).Google Scholar
  5. 5.
    M. V. Shamolin, Method of Analysis of Dynamic Sets with Variable Dissipation in Dynamics of Solid (Ekzamen, Moscow, 2007) [in Russian].Google Scholar
  6. 6.
    M. V. Shamolin, Dokl. Phys. 44(2), 110 (1999).ADSMathSciNetGoogle Scholar
  7. 7.
    M. V. Shamolin, Dokl. Phys. 45(11), 632 (2000).CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    M. V. Shamolin, Dokl. Phys. 54(3), 155 (2009).CrossRefADSMATHMathSciNetGoogle Scholar
  9. 9.
    M. V. Shamolin, in Itogi Nauki i Tekhniki. Ser. Sovrem. Mat. i ee Prilozh. (Moscow, 2013), pp. 5–254 [in Russian].Google Scholar
  10. 10.
    V. V. Trofimov and A. T. Fomenko, Algebra and Geometry of Integrable Hamiltonian Differential Equations (Faktorial, Moscow, 1995) [in Russian].MATHGoogle Scholar
  11. 11.
    M. V. Shamolin, Dokl. Phys. 58(11), 496 (2013).CrossRefADSMathSciNetGoogle Scholar
  12. 12.
    M. V. Shamolin, Dokl. Phys. 59(8), 375 (2014).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    S. A. Chaplygin, “About motion of heavy solids in an incompressible liquid,” in Complete Collection of Works (Izd-vo AN SSSR, Leningrad, 1933), Vol. 1, pp. 133–135 [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Research Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations