Doklady Physics

, Volume 60, Issue 1, pp 34–38 | Cite as

A multidimensional pendulum in a nonconservative force field

Mechanics

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Manakov, Funktsion. Analiz Prilozh. 10(4), 93 (1976).MATHMathSciNetGoogle Scholar
  2. 2.
    A. P. Veselov, Dokl. Akad. Nauk 270(6), 1298 (1983).MathSciNetGoogle Scholar
  3. 3.
    O. I. Bogoyavlenskii, Dokl. Akad. Nauk 287(5), 1105 (1986).ADSMathSciNetGoogle Scholar
  4. 4.
    V. A. Samsonov and M. V. Shamolin, Vestn. Mosk. Univ., Ser. 1: Mat. Mekh., No. 3, 51 (1989).Google Scholar
  5. 5.
    M. V. Shamolin, Methods of Analysis of Dynamic Systems with Variable Dissipation in Dynamics of Solids (Ekzamen, Moscow, 2007) [in Russian].Google Scholar
  6. 6.
    M. V. Shamolin, in Itogi Nauki i Techniki (VINITI, Moscow, 2013), Vol. 125, pp. 5–254 [in Russian].Google Scholar
  7. 7.
    M. V. Shamolin, Dokl. Phys. 44(2), 110 (1999).ADSMathSciNetGoogle Scholar
  8. 8.
    M. V. Shamolin, Dokl. Phys. 57(2), 78 (2012).CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    M. V. Shamolin, Dokl. Phys. 57(6), 250 (2012).CrossRefADSGoogle Scholar
  10. 10.
    M. V. Shamolin, Dokl. Phys. 45(11), 632 (2000).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    M. V. Shamolin, Dokl. Phys. 54(3), 155 (2009).CrossRefADSMATHMathSciNetGoogle Scholar
  12. 12.
    M. V. Shamolin, Dokl. Phys. 58(11), 496 (2013).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    S. A. Chaplygin, in Complete Collected Works (Izd-vo AN SSSR, Leningrad, 1933), Vol. 1, pp. 133–135 [in Russian].Google Scholar
  14. 14.
    M. V. Shamolin, Usp. Mat. Nauk 53(3), 209 (1998).CrossRefMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Research Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations