Doklady Physics

, Volume 58, Issue 12, pp 544–547 | Cite as

Influence of nanotwin generation near crack twins on the fracture toughness of nanomaterials

  • N. F. Morozov
  • I. A. Ovid’ko
  • N. V. Skiba
  • A. G. Sheinerman
Mechanics

Abstract

A theoretical model of microscopic mechanisms of the nucleation and development of deformation twins in nanocrystalline materials has been developed. Within the model, we have studied the generation of deformation twins near crack tips, which occurs through multiple nanoscopic shears that represent nanoscopic regions of an ideal plastic shear. It has been shown that the nucleation of such nanotwins near crack tips reduces the high local stresses that arise near these tips. Thus, the generation and development of nanotwins near crack tips increases the fracture toughness of brittle nanocrystalline materials and serves as an efficient mechanism of improving the crack resistance of deformed nanocrystalline materials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Aronin, G. Abrosimova, D. Matveev, and O. Rybchenko, Rev. Adv. Mater. Sci. 25(1), 52 (2010).Google Scholar
  2. 2.
    N. F. Morozov, Mathematical Problems of the Theory of Cracks (Nauka, Moscow, 1984) [in Russian].Google Scholar
  3. 3.
    A. S. Khan, Y. S. Suh, X. Chen, L. Takacs, and H. Zhang, Int. J. Plasticity 22, 195 (2006).CrossRefMATHGoogle Scholar
  4. 4.
    G.-D. Zhan and A. K. Mukherjee, Rev. Adv. Mater. Sci. 10(3), 185 (2005).Google Scholar
  5. 5.
    N. F. Morozov, I. A. Ovid’ko, A. G. Sheinerman, and E. C. Aifantis, Fiz. Mekh. Mater. 8(2) (2009).Google Scholar
  6. 6.
    V. L. Likhachov, A. I. Vergazov, V. V. Rybin, and Yu. V. Solomko, Fiz. Met. Metalloved. 43(1), 70 (1977).Google Scholar
  7. 7.
    V. V. Rybin, TRANSL (Metallurgiya, Moscow, 1986) [in Russian].Google Scholar
  8. 8.
    S. V. Bobylev, A. K. Mukherjee, I. A. Ovid’ko, and A. G. Sheinerman, Int. J. Plasticity 26(11), 1629 (2010).CrossRefMATHGoogle Scholar
  9. 9.
    Y. T. Zhu, X. Z. Liao, and X. L. Wu, Prog. Mater. Sci. 57(1), 1 (2012).CrossRefGoogle Scholar
  10. 10.
    Y. T. Zhu, X. L. Wu, X. Z. Liao, J. Narayan, S. N. Matha- udhu, and L. J. Kecskes, Appl. Phys. Lett. 95, 031909 (2009).ADSCrossRefGoogle Scholar
  11. 11.
    I. A. Ovid’ko and A. G. Sheinerman, Rev. Adv. Mater. Sci. 27(2), 189 (2011).Google Scholar
  12. 12.
    N. F. Morozov, I. A. Ovid’ko, A. G. Sheinerman, and N. V. Skiba, Rev. Adv. Mater. Sci. 32(1), 75 (2012).Google Scholar
  13. 13.
    J. P. Hirth and J. Lothe, Theory of Dislocations (Wiley, New York, 1982; Atomizdat, Moscow, 1972).Google Scholar
  14. 14.
    Mechanics of Fracture and Strength of Materials, Ed. by V. V. Panasyuk (Naukova Dumka, Kiev, 1988) [in Russian].Google Scholar
  15. 15.
    N. F. Morozov, I. A. Ovid’ko, A. G. Sheinerman, and E. C. Aifantis, J. Mech. Phys. Solids 58, 1088 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • N. F. Morozov
    • 1
    • 2
  • I. A. Ovid’ko
    • 1
    • 2
  • N. V. Skiba
    • 1
    • 2
  • A. G. Sheinerman
    • 1
    • 2
  1. 1.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesVasil’evskii Ostrov, St. PetersburgRussia
  2. 2.Department of Mathematics and MechanicsSt. Petersburg State UniversityStaryi Petergof, St. PetersburgRussia

Personalised recommendations