Advertisement

Doklady Physics

, Volume 58, Issue 4, pp 143–146 | Cite as

Complete list of first integrals of dynamic equations of motion of a 4D rigid body in a nonconservative field under the assumption of linear damping

  • M. V. Shamolin
Mechanics

Abstract

The dynamic part of equations of motion of a dynamically symmetric 4D rigid body, where the force field is concentrated on that part of the body that has the form of a two-dimensional disc, is investigated. In this case, the tensor of the angular velocity of such a body is six-dimensional, while the velocity of the center of mass is four-dimensional. Under certain conditions, a complete list of first integrals, which are expressed through elementary functions, is obtained.

Keywords

Force Field Resistance Force Dynamic Part Variable Dissipation Doklady Phys 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. I. Bogoyavlenskii, Dokl. Akad. Nauk 287(5), 1105 (1986).MathSciNetADSGoogle Scholar
  2. 2.
    O. I. Bogoyavlenskii, Dokl. Akad. Nauk 272(6), 1364 (1983).MathSciNetADSGoogle Scholar
  3. 3.
    A. P. Veselov, Dokl. Akad. Nauk 270(5), 1094 (1983).MathSciNetGoogle Scholar
  4. 4.
    A. P. Veselov, Dokl. Akad. Nauk 270(6), 1298 (1983).MathSciNetGoogle Scholar
  5. 5.
    M. V. Shamolin, Vestn. Mosk. Gos. Univ., Ser. 1: Mat. Mekh., No. 1, 52 (1992).Google Scholar
  6. 6.
    M. V. Shamolin, Methods of Analysis of Dynamic Systems with a Variable Dissipation in Rigid-Body Dynamics (Ekzamen, Moscow, 2007) [in Russian].Google Scholar
  7. 7.
    M. V. Shamolin, Doklady Phys. 44(2), 110 (1999).MathSciNetADSGoogle Scholar
  8. 8.
    V. V. Trofimov and A. T. Fomenko, Algebra and Geometry of Integrable Hamilton Differential Equations (Faktorial, Moscow, 1995) [in Russian].Google Scholar
  9. 9.
    M. V. Shamolin, Doklady Phys. 45(11), 632 (2000).MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    M. V. Shamolin, Dokl. Akad. Nauk 425(3), 338 (2009).MathSciNetGoogle Scholar
  11. 11.
    S. A. Chaplygin, in Complete Works (AN SSSR, Leningrad, 1933), Vol. 1, pp. 133–135 [in Russian].Google Scholar
  12. 12.
    M. V. Shamolin, Usp. Mat. Nauk 53(3), 209 (1998).MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. V. Shamolin, Doklady Phys. 57(2), 44 (2012).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • M. V. Shamolin
    • 1
  1. 1.Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations