Advertisement

Doklady Physics

, Volume 56, Issue 3, pp 186–189 | Cite as

A new case of integrability in dynamics of a 4D-solid in a nonconservative field

  • M. V. Shamolin
Mechanics

Keywords

Force Field Resistance Force Resistant Medium Noncon Servative Force Variable Dissipation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Shamolin, Vestn. Mosk. Univ. Mathematics, Mechanics (1), 52 (1992).Google Scholar
  2. 2.
    M. V. Shamolin, Methods of Analysis of Dynamic Systems with a Variable Dissipation in the Dynamics of Solid (Ekzamen, Moscow, 2007) [in Russian].Google Scholar
  3. 3.
    M. V. Shamolin, Dokl. Akad. Nauk 364(5), 627 (1999).Google Scholar
  4. 4.
    V. V. Trofimov and A. T. Fomenko, Algebra and Geometry of Integrable Hamiltonian Differential Equations (Faktorial, Moscow, 1995) [in Russian].zbMATHGoogle Scholar
  5. 5.
    M. V. Shamolin, Dokl. Akad. Nauk 375(3), 343 (2000).Google Scholar
  6. 6.
    M. V. Shamolin, Dokl. Akad. Nauk 425(3), 338 (2009).MathSciNetGoogle Scholar
  7. 7.
    S. A. Chaplygin, Motion of Heavy Solids in an Incompressible Fluid, in Complete Works (Akad. Nauk SSSR, Leningrad, 1933), Vol. 1, pp. 133–135 [in Russian].Google Scholar
  8. 8.
    M. V. Shamolin, Usp. Mat. Nauk 53 (1998).Google Scholar
  9. 9.
    O. I. Bogoyavlenskii, Dokl. Akad. Nauk SSSR 287(5), 1105 (1986).ADSMathSciNetGoogle Scholar
  10. 10.
    O. I. Bogoyavlenskii, Dokl. Akad. Nauk SSSR 272(6), 1364 (1983).ADSMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Institute of MechanicsMoscow State UniversityMoscowRussia

Personalised recommendations