Advertisement

Doklady Physics

, Volume 55, Issue 5, pp 223–227 | Cite as

Basic principles and models of dynamic advection

  • A. V. Borisov
  • I. S. Mamaev
  • S. M. Ramodanov
Mechanics

Keywords

Vortex Advection DOKLADY Physic Point Vortex Chaotic Advection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. F. Ganiev, D. L. Reviznikov, and L. E. Ukrainskiĭ, Nelineĭnaya Dinamika 4(2), 113 (2008).Google Scholar
  2. 2.
    S. M. Ramodanov, Nelineĭnaya Dinamika 2(4), 435 (2006).Google Scholar
  3. 3.
    H. Aref, Nelineĭnaya Dinamika 2(1), 111 (2006).Google Scholar
  4. 4.
    H. Aref, J. Fluid Mech. 143, 1 (1984).zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    H. Aref and N. Pomphrey, Phys. Lett. A 78, 297 (1980).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    A. V. Borisov, A. A. Kilin, and I. S. Mamaev, Regul. Chaotic Dyn. 14(1), 18 (2009).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    A. V. Borisov, I. S. Mamaev, and S. M. Ramodanov, Regul. Chaotic Dyn. 8(4) (2003).Google Scholar
  8. 8.
    A. V. Borisov, I. S. Mamaev, and S. M. Ramodanov, Discrete and Continuous Dyn. Syst. 19(2), 235 (2007).zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    G. Lamb, Hydeodynamics (OGIZ, Moscow) [in Russian].Google Scholar
  10. 10.
    S. M. Ramodanov, Regul. Chaotic Dyn. 7(3), 291 (2002).zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. V. Borisov
    • 1
  • I. S. Mamaev
    • 1
  • S. M. Ramodanov
    • 1
  1. 1.Institute of Computer InvestigationsIzhevskRussia

Personalised recommendations