Advertisement

Doklady Earth Sciences

, Volume 488, Issue 2, pp 1227–1230 | Cite as

Internal Waves of Mode 2 in the Black Sea

  • A. N. SerebryanyEmail author
  • E. E. Khimchenko
OCEANOLOGY
  • 19 Downloads

Abstract

The results of the first observations of mode 2 internal waves in the Black Sea are presented. The measurements were carried out on the Crimean shelf from the MGI platform in July 2011. In the period after the sweep when the measurements were performed, mode 1 inertial internal waves were observed first and then mode 2. The oscillations of mode 2 were most pronounced in the vertical displacements of the water column, reaching the amplitudes of 10 m. The features of mode 2 were also noted in fluctuations of the horizontal component of the currents. Along with the registration of mode 2 inertial internal waves, the appearance of short-period internal waves of mode 2 was also noted.

Notes

FUNDING

This study was performed within the framework of a State Assignment of the Shirshov Institute of Oceanology, Russian Academy of Sciences, theme no. 0149-2019-0011.

REFERENCES

  1. 1.
    W. H. Munk, in Evolution of Physical Oceanography (Cambridge, 1981).Google Scholar
  2. 2.
    K. D. Sabinin, A. N. Serebryanyi, and A. A. Nazarov, Oceanology (Engl. Transl.) 44 (6), 753–759 (2004).Google Scholar
  3. 3.
    K. V. Konyaev, K. D. Sabinin, and A. N. Serebryany, Deep-Sea Res., Part I 42 (11/12), 2075–2091 (1995).CrossRefGoogle Scholar
  4. 4.
    J. C. B. Da Silva, A. L. New, and J. M. Magalhaes, Deep-Sea Res., Part I 58, 229–240 (2011).CrossRefGoogle Scholar
  5. 5.
    Y. J. Yang, Y. C. Fang, M. -H. Chang, S. R. Ramp, C.-C. Kao, and T. Y. Tang, J. Geophys. Res. 114, C10003 (2009).  https://doi.org/10.1029/2009JC005318 CrossRefGoogle Scholar
  6. 6.
    S. R. Ramp, Y. J. Yang, D. B. Reeder, and F. L. Bahr, J. Geophys. Res. 117, C03043 (2012).  https://doi.org/10.1029/2011JC007662 CrossRefGoogle Scholar
  7. 7.
    E. L. Shroyer, J. N. Moum, and J. D. Nash, J. Geophys. Res.: Oceans 115, C7 (2010).CrossRefGoogle Scholar
  8. 8.
    M. D. Rayson, N. L. Jones, and G. N. Ivey, J. Phys. Oceanogr. 49 (1), 328 (2019).CrossRefGoogle Scholar
  9. 9.
    D. A. Mayer, H. O. Mofjeld, and K. D. Leaman, J. Phys. Oceanogr. 11, 87–106 (1981).CrossRefGoogle Scholar
  10. 10.
    V. A. Ivanov and A. N. Serebryanyi, Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 18 (6), 683–685 (1982).Google Scholar
  11. 11.
    A. N. Serebryanyi and V. A. Ivanov, Fundam. Prikl. Gidrofiz., No. 3, 34–45 (2013).Google Scholar
  12. 12.
    A. Serebryany, Hydroacoustics 17, 187–198 (2014).Google Scholar
  13. 13.
    V. V. Goncharov and I. A. Leikin, Okeanologiya 23 (2), 210 (1983).Google Scholar
  14. 14.
    K. R. Helfrich and W. K. Melville, J. Fluid Mech. 167, 285–308 (1986).CrossRefGoogle Scholar
  15. 15.
    M. Dunphy and K. G. Lamb, J. Geophys. Res.: Oceans 119, 523–536 (2014).  https://doi.org/10.1002/2013JC009293 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Shirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia
  2. 2.Andreyev Acoustics Institute JSCMoscowRussia

Personalised recommendations