Advertisement

Doklady Earth Sciences

, Volume 488, Issue 2, pp 1173–1177 | Cite as

Inverse Modeling for Evaluation of the Kinetic Parameters of Metamorphic Reactions in Texture-Homogenous Rocks

  • I. I. LikhanovEmail author
GEOCHEMISTRY
  • 22 Downloads

Abstract

To obtain the kinetic parameters of diffusion-controlled mineral reactions in texture-homogenous rocks, a new approach is proposed. The method is based on comparison of the modeling concepts of the thermal field evolution to the observed variations in the chemical composition of minerals within the contact aureole of the Kharlovo gabbro massif. The effective rate of mineral reactions involving biotite (~10–12 s–1) and the effective coefficient of diffusion (5.29 × 10–16 cm2/s at T = 475°C) are determined. The results of theoretical modeling are in agreement with the data on the rates of reactions of contact metamorphism, as well as with the empirical estimates of the coefficients of diffusion at grain boundaries in mineral aggregates and segregations under the corresponding PT parameters.

Notes

FUNDING

This study was supported by the Russian Foundation for Basic Research, project no. 18–05–00152.

REFERENCES

  1. 1.
    G. W. Fisher, Geochim. Cosmochim. Acta 42, 1035–1050 (1978).CrossRefGoogle Scholar
  2. 2.
    E. F. Baxter, Geol. Soc. London Spec. Publ. 220, 183–202 (2003).CrossRefGoogle Scholar
  3. 3.
    R. Joesten and G. Fisher, Geol. Soc. Am. Bull. 100, 714–732 (1988).CrossRefGoogle Scholar
  4. 4.
    V. V. Reverdatto, I. I. Likhanov, O. P. Polyanskii, V. S. Sheplev, and V. Yu. Kolobov, Metamorphism: Nature and Models (Siberian Branch RAS, Novosibirsk, 2017) [in Russian].Google Scholar
  5. 5.
    I. I. Likhanov, V. V. Reverdatto, and I. Memmi, Eur. J. Mineral 6, 133–144 (1994).CrossRefGoogle Scholar
  6. 6.
    I. I. Likhanov, V. V. Reverdatto, and I. Memmi, Eur. J. Mineral 7, 379–389 (1995).CrossRefGoogle Scholar
  7. 7.
    E. W. Bolton, A. C. Lasaga, and D. M. Rye, Am. J. Sci. 299, 1–68 (1999).CrossRefGoogle Scholar
  8. 8.
    I. I. Likhanov and A. A. Ten, Dokl. Akad. Nauk SSSR 321 (5), 1044–1048 (1991).Google Scholar
  9. 9.
    I. I. Likhanov, A. A. Ten, V. V. Reverdatto, and E. P. Solotchina, Dokl. Earth Sci. 346 (1), 78–82 (1996).Google Scholar
  10. 10.
    I. I. Likhanov, A. A. Ten, V. V. Reverdatto, V. A. Ananiev, and I. Memmi, Mineral. Petrol. 71, 51–65 (2001).CrossRefGoogle Scholar
  11. 11.
    J. A. Nelder and R. Mead, Comput. J. 7, 308–313 (1965).CrossRefGoogle Scholar
  12. 12.
    I. N. Bronshtein and K. A. Semendyayev, Handbook of Mathematics (Verlag Harri Deutsch, Berlin, 1979).CrossRefGoogle Scholar
  13. 13.
    V. V. Reverdatto, A. V. Babichev, I. I. Likhanov, and O. P. Polyanskii, Dokl. Earth Sci. 480 (4), 750–753 (2018).CrossRefGoogle Scholar
  14. 14.
    I. I. Likhanov, Geol. Soc. London Spec. Publ. 478, 89–115 (2018).  https://doi.org/10.1144/SP478.11 CrossRefGoogle Scholar
  15. 15.
    V. N. Balashov and B. W. D. Yardley, Am. J. Sci. 298, 441–470 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations