Advertisement

Doklady Earth Sciences

, Volume 488, Issue 1, pp 1013–1017 | Cite as

Rb–Sr Age of Riphean Glauconites of the Kamo Group (Baikit Anteclise, Siberian Craton)

  • T. S. Zaitseva
  • A. B. KuznetsovEmail author
  • N. A. Ivanova
  • M. A. Maslennikov
  • V. V. Pustylnikova
  • T. L. Turchenko
  • K. E. Nagovitsin
GEOLOGY
  • 23 Downloads

Abstract

A mineralogical-geochemical study of globular phyllosilicates (GPS) of the glauconite-illite series of the Dolgokta Formation from the stratigraphic well Chunkinskaya Well 282 was conducted, and their Rb–Sr age was determined. The suitability of the mineral for geochronological studies was estimated based on the Mössbauer spectroscopy data and the model of cation distribution in the octahedral sheet of GPS. The mineralogical and crystallochemical characteristics indicate epigenetic defects in the glauconite crystal structure; therefore, its Rb–Sr isochronous age (1300 ± 7 Ma) is “rejuvenated” and reflects a partial recrystallization event. The 87Sr/86Sr ratio in dolomites of the Dolgokta and Kuyumba formations varies from 0.70602 to 0.72230 and thereby confirms the epigenetic recrystallization of rocks. The model Rb–Sr age of glauconite, which was estimated taking the enrichment in radiogenic 87Sr into account, is within 1340–1400 Ma. The age estimate defines the upper limit of the stratigraphic distribution of the Mesoproterozoic fossil Tappania that was found in the Yurubchen and Dolgokta formations of the Baikit Anteclise.

Notes

FUNDING

This study was accomplished in accordance with the Research Program of IPGG RAS (no. 0132-2019-0014) and Fundamental Research Program (project no. 0331-2019-0002). It is supported by the Russian Foundation for Basic Research (project no. 16-05-00936).

REFERENCES

  1. 1.
    B. G. Kraevskii, A. M. Pustylnikov, V. A. Krinin, M. K. Kraevskaya, and E. A. Ledneva, Geol. Geofiz. 32 (6), 103–110 (1991).Google Scholar
  2. 2.
    A. E. Kontorovich, A. N. Izosimova, A. A. Kontorovich, E. M. Khabarov, and I. D. Timoshina, Geol. Geofiz. 37 (8), 166–195 (1996).Google Scholar
  3. 3.
    E. M. Khabarov, V. A. Ponomarchuk, I. P. Morozova, I. V. Varaksina, and S. V. Saraev, Geol. Geofiz. 43 (3), 211–239 (2002).Google Scholar
  4. 4.
    E. M. Khabarov and I. V. Varaksina, Russ. Geol. Geophys. 52 (8), 1173–1198 (2011).Google Scholar
  5. 5.
    B. G. Kraevskii, M. S. Yakshin, and K. E. Nagovitsin, Geol. Miner.-Syr’evye Resur. Sib., No. 7, 4–14 (2018).Google Scholar
  6. 6.
    K. Nagovitsin, Precambrian Res. 173, 137–145 (2009).  https://doi.org/10.1016/j.precamres.2009.02.005 CrossRefGoogle Scholar
  7. 7.
    K. E. Nagovitsin, A. M. Stanevich, and T. A. Kornilova, Russ. Geol. Geophys. 51 (11), 1531–1538 (2010).CrossRefGoogle Scholar
  8. 8.
    T. S. Zaitseva, I. M. Gorokhov, M. A. Semikhatov, T. A. Ivanovskaya, A. B. Kuznetsov, and O. V. Dorzhieva, Stratigr. Geol. Correl. 25 (6), 581–606 (2017).  https://doi.org/10.1134/S0869593817060077 CrossRefGoogle Scholar
  9. 9.
    T. S. Zaitseva, I. M. Gorokhov, M. A. Semikhatov, A. B. Kuznetsov, T. A. Ivanovskaya, G. V. Konstantinova, and O. V. Dorzhieva, Stratigr. Geol. Correl. 26 (6), 611–633 (2018).  https://doi.org/10.1134/S0869593818060059 CrossRefGoogle Scholar
  10. 10.
    T. S. Zaitseva, M. A. Semikhatov, I. M. Gorokhov, V. N. Sergeev, A. B. Kuznetsov, T. A. Ivanovskaya, N. N. Mel’nikov, and G. V. Konstantinova, Stratigr. Geol. Correl. 24 (6), 549–574 (2016).  https://doi.org/10.1134/S0869593816050063 CrossRefGoogle Scholar
  11. 11.
    A. B. Kuznetsov, M. A. Semikhatov, and I. M. Gorokhov, Stratigr. Geol. Correl. 22 (6), 553–575 (2014).  https://doi.org/10.1134/S0869593814060033 CrossRefGoogle Scholar
  12. 12.
    M. A. Semikhatov, A. B. Kuznetsov, and N. M. Chumakov, Stratigr. Geol. Correl. 23 (6), 568–579 (2015).  https://doi.org/10.1134/S0869593815060088 CrossRefGoogle Scholar
  13. 13.
    B. Rasmussen, P. K. Bose, S. Sakar, S. Banerjee, I. R. Fletcher, and N. J. McNaughton, Geology 30 (2), 103–106 (2002).  https://doi.org/10.1130/0091-7613(2002)030<0103:GUPZAF>2.0.CO;2 CrossRefGoogle Scholar
  14. 14.
    Z. Lan, X. Li, Z. Q. Chen, Q. Li, A. Hofmann, Y. Zhang, Y. Zhong, Y. Liu, G. Tang, X. Ling, and J. Li, Precambrian Res. 251, 21–32 (2014).  https://doi.org/10.1016/j.precamres.2014.06.012 CrossRefGoogle Scholar
  15. 15.
    Z. R. Adam, M. L. Skidmore, D. W. Mogk, and N. J. Butterfield, Geology 45 (5), 387–390 (2017).  https://doi.org/10.1130/G38749.1 CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • T. S. Zaitseva
    • 1
  • A. B. Kuznetsov
    • 1
    Email author
  • N. A. Ivanova
    • 2
  • M. A. Maslennikov
    • 2
  • V. V. Pustylnikova
    • 2
  • T. L. Turchenko
    • 1
  • K. E. Nagovitsin
    • 3
  1. 1.Institute of Precambrian Geology and Geochronology, Russian Academy of SciencesSt. PetersburgRussia
  2. 2.Siberian Research Institute of Geology, Geophysics, and Mineral ResourcesNovosibirskRussia
  3. 3.Trofimuk Institute of Petroleum-Gas Geology and Geophysics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations