Advertisement

Doklady Earth Sciences

, Volume 485, Issue 2, pp 381–385 | Cite as

Mineralogy, Trace Element Composition, and Classification of Onello High-Ni Ataxite

  • K. D. LitasovEmail author
  • A. Ishikawa
  • A. G. Kopylova
  • N. M. Podgornykh
  • N. P. Pokhilenko
GEOCHEMISTRY

Abstract

The trace element composition of the Onello meteorite is analyzed in detail using SEM and LA-ICP-MS. The following Ni contents of minerals are determined (wt %): 23.0–25.4 in taenite, 5.8–8.8 in kamacite, 22–26 in schreibersite, 44–52 in nickelphosphide, 20.6–21.8 in allabogdanite, and 75–81 in awaruite. In the trace element content, the Onello meteorite corresponds to the IAB group of iron meteorites. Inside this group, it mostly matches the sHH subgroup (with high Au and Ni contents). The presence of allabogdanite in the meteorite indicates the high PT parameters of its formation: >8 GPa and 1000–1400°C. Thus, the formation of the Onello meteorite is related to impact metamorphism of a parental body of iron meteorites of the IAB group and vinonaites, in which a P- and Ni-rich area underwent melting and further crystallization.

Notes

FUNDING

This work was supported by the Russian Science Foundation, project no. 17-17-01177.

REFERENCES

  1. 1.
    T. Kleine, M. Touboul, B. Bourdon, F. Nimmo, K. Mezger, H. Palme, S. B. Jacobsen, Q. Z. Yin, and A. N. Halliday, Geochim. Cosmochim. Acta 73, 5150–5188 (2009).CrossRefGoogle Scholar
  2. 2.
    J. I. Goldstein, E. R. D. Scott, and N. L. Chabot, Chem. Erde-Geochem. 69, 293–325 (2009).CrossRefGoogle Scholar
  3. 3.
    J. T. Wasson and G. W. Kallemeyn, Geochim. Cosmochim. Acta 66, 2445–2473 (2002).CrossRefGoogle Scholar
  4. 4.
    A. G. Kopylova, B. V. Oleinikov, N. V. Sobolev, and O. A. Sushko, Dokl. Earth Sci. 368 (7), 899–901 (1999).Google Scholar
  5. 5.
    A. G. Kopylova and B. V. Oleinikov, Proc. Rus. Min. Soc., No. 5, 37–43 (2000).Google Scholar
  6. 6.
    S. N. Britvin, N. S. Rudashevsky, S. V. Krivovichev, P. C. Burns, and Y. S. Polekhovsky, Am. Mineral. 87, 1245–1249 (2002).CrossRefGoogle Scholar
  7. 7.
    K. D. Litasov, A. Ishikawa, I. S. Bazhan, D. S. Ponomarev, T. Hirata, N. M. Podgornykh, and N. P. Pokhilenko, Dokl. Earth Sci. 478 (1), 62–66 (2018).CrossRefGoogle Scholar
  8. 8.
    V. Raghavan, J. Phase Equilib. Diffus. 31, 369–371 (2010).CrossRefGoogle Scholar
  9. 9.
    P. Dera, B. Lavina, L. A. Borkowski, V. B. Prakapenka, S. R. Sutton, M. L. Rivers, R. T. Downs, N. Z. Boctor, and C. T. Prewitt, Geophys. Res. Lett. 35, L10301 (2008).  https://doi.org/10.11029/12008GL033867
  10. 10.
    A. J. Stewart and M. W. Schmidt, Geophys. Res. Lett. 34, L13201 (2007).  https://doi.org/10.11029/12007GL030138
  11. 11.
    A. I. Zaitsev, Z. V. Dobrokhotova, A. D. Litvina, and B. M. Mogutnov, J. Chem. Soc., Faraday Trans. 91, 703–712 (1995).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • K. D. Litasov
    • 1
    • 2
    Email author
  • A. Ishikawa
    • 3
  • A. G. Kopylova
    • 4
  • N. M. Podgornykh
    • 1
  • N. P. Pokhilenko
    • 1
  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Tokyo Institute of TechnologyTokyoJapan
  4. 4. Institute of Geology of Diamond and Precious Metals, Siberian Branch, Russian Academy of SciencesYakutskRussia

Personalised recommendations