Advertisement

Doklady Earth Sciences

, Volume 483, Issue 2, pp 1579–1581 | Cite as

A Molecular-Electronic Hydrophone for Low-Frequency Research of Ambient Noise in the World Ocean

  • D. L. ZaitsevEmail author
  • S. Y. Avdyukhina
  • V. M. Agafonov
  • A. S. Bugaev
  • E. V. Egorov
OCEANOLOGY
  • 11 Downloads

Abstract

This work is devoted to the problems of elaboration of the instrumental basis for low-frequency sensing of ambient noise of the ocean. The experimental data of testing of the technical parameters of a molecular-electronic hydrophone are given. The amplitude-frequency and noise parameters of prototypes have been studied. The operation of a hydrophone with a frequency range of 0.02–200 Hz and sensitivity of 0.75 mV/Pa is described. Ambient noise was measured with the use of correlation analysis.

Notes

ACKNOWLEDGMENTS

This work was performed at the Moscow Institute of Physics and Technology and was supported by the Ministry of Education and Science of the Russian Federation, project no. 14.578.21.0243.

REFERENCES

  1. 1.
    G. M. Wenz, J. Acoust. Soc. Am. 34 (12), 1936–1956 (1962).CrossRefGoogle Scholar
  2. 2.
    H. J. Cini and T. J. Meyers, US Patent No. 4178577 (1979).Google Scholar
  3. 3.
    D. Liu,  Y. Liang,  L. Jin,  H. Sun,  L. Cheng,  and B.-O. Guang, Opt. Lett. 41 (19), 4530–4533 (2016).CrossRefGoogle Scholar
  4. 4.
    B. Shen, Y. Wada, D. Koyama, R. Isago, Y. Mizuno, and K. Nakamura, in Proc. 21st Int. Conference on Optical Fiber Sensors (Ottawa, 2011), Vol. 7753, p. 77539W.Google Scholar
  5. 5.
    Y. Tan, Y. Zhang, and B. Guan, IEEE Sens. J. 11 (5), 1169–1172.Google Scholar
  6. 6.
    K. S. Kim, Y. Mizuno, and K. Nakamura, Ultrasonics 54 (4), 1047–1051 (2014).CrossRefGoogle Scholar
  7. 7.
    J. Ma, M. Zhao, X. Huang, H. B. Y. Chen, and M. Yu, Opt. Express 24 (17), 19008 (2016).CrossRefGoogle Scholar
  8. 8.
    T. Deng, D. Chen, J. Chen, Z. Sun, and J. Wang, IEEE Sens. J. 16 (3) (2016).Google Scholar
  9. 9.
    D. G. Levchenko, I. P. Kuzin, M. V. Safonov, V.  N.  Sychikov, I. V. Ulomov, and B. V. Kholopov, Seism. Instrum. 46 (3), 250–264 (2010).CrossRefGoogle Scholar
  10. 10.
    D. Zaitsev, A. Antonov, and V. Krishtop, Proc. SPIE 10224, 102241H (2016). doi 10.1117/12.2267073Google Scholar
  11. 11.
    G. N. Antonovskaya, N. K. Kapustian, A. I. Moshkunov, A. V. Danilov, and K. A. Moshkunov, J. Seismol. 21, 1039 (2017). https://doi.org/10.1007/s10950-017-9650-8CrossRefGoogle Scholar
  12. 12.
    N. S. Lidorenko, B. I. Ilin, I. A. Zaidenman, V. V. Sobol, and I. G. Shchigorev, An Introduction to Molecular Electronics (Energoatomizdat, Moscow, 1984) [in Russian].Google Scholar
  13. 13.
    V. M. Agafonov, A. N. Neeshpapa, and A. S. Shabalina, in Encyclopedia of Earthquake Engineering (Springer, Berlin, 2015), pp. 944–961.Google Scholar
  14. 14.
    A. S. Shabalina, et al., Achiev. Mod. Radioelectron. 9, 4–33 (2014). http://www.radiotec.ru/catalog.php?cat=jr4&art=15249Google Scholar
  15. 15.
    D. L. Zaitsev, V. Agafonov, E. Egorov, A. Antonov, and A. Shabalina, Sensors 15 (11), 29378–29392 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. L. Zaitsev
    • 1
    Email author
  • S. Y. Avdyukhina
    • 1
  • V. M. Agafonov
    • 1
  • A. S. Bugaev
    • 1
    • 2
  • E. V. Egorov
    • 1
  1. 1.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow RegionRussia
  2. 2.Kotel’nikov Institute of Radio-Engineering and Electronics, Russian Academy of SciencesMoscowRussia

Personalised recommendations