Doklady Earth Sciences

, Volume 483, Issue 2, pp 1567–1570 | Cite as

A New Approach to 40Ar/39Ar Dating of Combustion Events: A Case Study from the Late Pleistocene Coal Fires in Goose Lake Depression (Transbaikalia)

  • S. A. NovikovaEmail author
  • N. G. Murzintsev
  • A. V. Travin
  • E. V. Sokol
  • A. K. Tulokhonov


Based on the study results of combustion metamorphic (CM) rocks from the young (0.01–0.06 kyr) CM complex at the Goose Lake brown coal deposit, a new approach to 40Ar/39Ar dating of coal paleofires was substantiated. The results of 40Ar/39Ar dating of K–Na feldspars (0.10 ± 0.16 Ma) from fragments of quartz syenites (initial age 285–305 Ma), enclosed in paralavas and heated by fire (T ≥ 950°С) show that magmatic feldspars have lost all radiogenic argon during combustion event. As follows from the numerical modeling results, feldspars (diffusion domains of 100 μm in size) can lose all radiogenic argon under heating (T = 950°C) in five hours. The estimated data have proved that grains of detrital feldspars enclosed in sediments that were subject to heating must be completely degassed over the time of existence of large fire focus. It means that glassy (T ≥ 900°C) CM rocks with relics of K–Na feldspars are applicable for correct 40Ar/39Ar dating of combustion metamorphic paleoevents. The abundance of such rocks in the CM sections promotes opportunities for geochronological reconstructions of the Late Cenozoic history of sedimentary basins.



We are grateful to M.V. Khlestov (IGM SB RAS) for assistance in performing SEM analysis. This work was performed within the framework of a State Contract (project no. 0330-2016-0013) and was supported by the Russian Foundation for Basic Research (project nos. 15-05-00760 А and 15-45-04444 r_sibir_a).


  1. 1.
    E. L. Heffern, P. W. Reiners, C. W. Naeser, and D. A. Coates, in Geology of Coal Fires: Case Studies from Around the World, Vol. 18 of Reviews in Engineering Geology (Geol. Soc. America, New York, 2007), pp. 155–175.Google Scholar
  2. 2.
    S. Novikova, E. Sokol, and P. Khvorov, Quat. Geochronol. 36, 38–54 (2016).CrossRefGoogle Scholar
  3. 3.
    A. A. Tsygankov, B. A. Litvinovskii, B. M. Dzhan’, M. Reikov, D. I. Lyu, A. N. Larionov, S. L. Presnyakov, E. N. Lepekhina, and S. A. Sergeev, Russ. Geol. Geophys. 51 (9), 972–994 (2010).CrossRefGoogle Scholar
  4. 4.
    Ts. O. Ochirov, Geology of Gusino-Ivolginskaya Part of Buryatia (Buryatsk. Knizhn. Izd., Ulan-Ude, 1964) [in Russian].Google Scholar
  5. 5.
    R. W. Montana, B. S. Luth, S. L. White, S. L. Boettcher, K. S. McBride, and J. F. Rice, in Progress in Metamorphic and Magmatic Petrology (Cambridge Univ. Press, Cambridge, 1991), pp. 351–368.Google Scholar
  6. 6.
    I. Parsons, Mineral. Mag. 73, 529–551 (2010).CrossRefGoogle Scholar
  7. 7.
    K. V. Hodges, in Treasure on Geochemistry (Elsevier, Oxford, 2004), pp. 263–292.Google Scholar
  8. 8.
    E. V. Sokol, N. V. Maksimova, E. N. Nigmatulina, V. V. Sharygin, and V. M. Kalugin, Pyrogenic Metamorphism (Siberian Branch Russ. Acad. Sci., Novosibirsk, 2005) [in Russian].Google Scholar
  9. 9.
    A. K. Tulokhonov, Geomorfologiya, No. 1, 91–96 (1990).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. A. Novikova
    • 1
    Email author
  • N. G. Murzintsev
    • 1
  • A. V. Travin
    • 1
  • E. V. Sokol
    • 1
  • A. K. Tulokhonov
    • 2
  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of SciencesNovosibirskRussia
  2. 2.Baikal Institute of Nature Management, Siberian Branch, Russian Academy of SciencesUlan-UdeRussia

Personalised recommendations