Advertisement

Doklady Earth Sciences

, Volume 483, Issue 2, pp 1553–1557 | Cite as

Intermediate Waters in the Irminger Sea during Deep Convection: Variability and the Role of Circulation Mechanisms

  • S. V. GladyshevEmail author
  • V. S. Gladyshev
  • L. A. Pautova
  • S. K. Gulev
  • A. V. Sokov
OCEANOLOGY
  • 19 Downloads

Abstract

The spatial structure, interannual variability, and pathways of the Labrador Sea water (LSW) in the Irminger Sea were analyzed during period of deep convection in 2014–2017. Four regions of the LSW were distinguished, that characterized by different thermohaline properties and dissolved oxygen saturation. The regions showed synchronous variability and complied with the main circulation (the Irminger Current, Irminger Gyre, and the western boundary current system including the recirculation of the Irminger Current). The flowing-out LSW from the Irminger Sea is warmer by 0.17°C and more saline by 0.02 PSU than the flowing-in waters because of the mixing with the Irminger Current.

Notes

REFERENCES

  1. 1.
    M. W. Buckley and J. Marshall, J. Rev. Geophys. 54, 5–63 (2016). doi 10.1002/2015RG000493CrossRefGoogle Scholar
  2. 2.
    I. Yashayaev and J. W. Loder, J. Geophys. Res. 121, 8095–8114 (2016). doi 10.1002/2016JC012046CrossRefGoogle Scholar
  3. 3.
    S. V. Gladyshev, V. S. Gladyshev, A. S. Falina, and A. A. Sarafanov, Oceanology (Engl. Transl.) 56 (2), 326–335 (2016). doi 10.1134/S0001437016030073Google Scholar
  4. 4.
    H. M. van Aken, M. F. de Jong, and I. Yashayaev, Deep-Sea Res. 58, 505–523 (2011). doi doi 10.1016/j.dsr.2011.02.008CrossRefGoogle Scholar
  5. 5.
    R. S. Pickart, F. Straneo, and G. W. K. Moore, Deep-Sea Res. 50, 23–52 (2003).CrossRefGoogle Scholar
  6. 6.
    K. L. Lavender, W. B. Owens, and R. E. Davis, Deep-Sea Res. 52, 767–785 (2005).CrossRefGoogle Scholar
  7. 7.
    F. Straneo, R. S. Pickart, and K. Lavender, Deep-Sea Res. 50, 701–719 (2003).CrossRefGoogle Scholar
  8. 8.
    I. M. Belkin, Geophys. Res. Lett. 31, L08306 (2004). doi doi 10.1029/2003GL019334CrossRefGoogle Scholar
  9. 9.
    S. V. Gladyshev, V. S. Gladyshev, S. K. Gulev, and A. V. Sokov, Dokl. Earth Sci. 469 (1), 766–770 (2016). doi 10.1134/S1028334X16070229CrossRefGoogle Scholar
  10. 10.
    K. Vage, R. S. Pickart, A. Sarafanov, et al., Deep-Sea Res. 58, 590–614 (2011). doi 10.1016/j.dsr.2011.03.001CrossRefGoogle Scholar
  11. 11.
    A. Sy, M. Rhein, J. R. N. Lazier, et al., Nature 386, 675–679 (1997).CrossRefGoogle Scholar
  12. 12.
    S. V. Gladyshev, V. S. Gladyshev, S. K. Gulev, and A. V. Sokov, Dokl. Earth Sci. (2018) (in press).Google Scholar
  13. 13.
    A. Sarafanov, A. Falina, and H. Mercier, et al., J. Geophys. Res. 117, C01014 (2012). doi 10.1029/2011JC007572CrossRefGoogle Scholar
  14. 14.
    S. K. Gulev and K. P. Belyaev, J. Clim. 25, 184–206 (2012). doi 10.1175/2011JCLI4211.1CrossRefGoogle Scholar
  15. 15.
    J. P. Grist, S. A. Josey, Z. L. Jacobs, et al., Clim. Dyn. 46, 4027–4045 (2016). doi 10.1007/s00382-015-2819-3CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. V. Gladyshev
    • 1
    Email author
  • V. S. Gladyshev
    • 1
  • L. A. Pautova
    • 1
  • S. K. Gulev
    • 1
  • A. V. Sokov
    • 1
  1. 1.Shirshov Institute of Oceanology, Russian Academy of SciencesMoscowRussia

Personalised recommendations