Doklady Earth Sciences

, Volume 483, Issue 2, pp 1539–1541 | Cite as

The Influence of Temperature and Humidity on Greenhouse Gas Emission in Experiments on Imitation of the Full Vegetation Cycle of Tundra Ecosystems

  • Yu. V. BarkhatovEmail author
  • S. A. Ushakova
  • V. N. Shikhov
  • S. Yu. Evgrafova
  • A. A. Tikhomirov
  • A. G. Degermendzhi


Laboratory experiments were conducted in a hermetically sealed growth chamber with two soil samples obtained from the arctic tundra zone with different levels of moisture. Samples were maintained at a growing season typical of the region from which they were taken, and for the sample with a high level of moisture it was made twice: with the temperature in accord with natural conditions and one increased by 2°C. It has been shown that heating of the overmoistened tundra soil by 2°C can increased the average carbon dioxide emissions by almost two times (from 75 to 100–150 mg m–2 h–1). Upon the application of heat, no significant increase in methane emission was observed.



This study was supported by the Russian Foundation for Basic Research, the Krasnoyarsk Krai Government and the Krasnoyarsk Regional Fund of Science (project no. 17–45–240884), the Russian Foundation for Basic Research (project no. 16–04–01677-а), and the Institute of Biophysics, Siberian Branch, Russian Academy of Sciences, governmental assignment, theme no. 56.1.4. for 2013–2020.


  1. 1.
    Y. M. Naumov, in Cryosols, Ed. by J. M. Kimble (Springer, Berlin, 2004), pp. 161–183.Google Scholar
  2. 2.
    M. Minke, N. Donner, N. S. Karpov, P. de Klerk, and H. Joosten, Peatlands Int. 1, 36–40 (2007).Google Scholar
  3. 3.
    J. R. Mackay, Permafrost Periglacial Processes 10, 39–63 (1999).CrossRefGoogle Scholar
  4. 4.
    C. Tarnocai, Permafrost Periglacial Processes 10, 251–263 (1999).CrossRefGoogle Scholar
  5. 5.
    K. M. Walter, S. A. Zimov, J. P. Chanton, D. Verbyla, and F. S. Chapin, Nature 443, 71–75 (2006).CrossRefGoogle Scholar
  6. 6.
    P. Kuhry, E. Dorrepaal, G. Hugelius, E. A. G. Schuur, and C. Tarnocai, Permafrost Periglacial Processes 21, 208–214 (2010).CrossRefGoogle Scholar
  7. 7.
    P. Camill, Global Change Biol. 6, 69–182 (2000).CrossRefGoogle Scholar
  8. 8.
    C. S. Sturtevant and W. C. Oechel, Global Change Biol. 19, 2853–2866 (2013).CrossRefGoogle Scholar
  9. 9.
    D. Olefeldt, M. R. Turetsky, P. M. Crill, and A. D. McGuire, Global Change Biol. 19 (2), 589–603 (2013).CrossRefGoogle Scholar
  10. 10.
    T. Sachs, M. Giebels, J. Boike, and L. Kutzbach, Global Change Biol. 16, 3096–3110 (2010).Google Scholar
  11. 11.
    C. Wille, L. Kutzbach, T. Sachs, D. Wagner, and E. M. Pfeiffer, Global Change Biol. 14, 1395–1408 (2008).CrossRefGoogle Scholar
  12. 12.
    L. Kutzbach, D. Wagner, and E. M. Pfeiffer, Biogeochemistry 69, 341–362 (2004).CrossRefGoogle Scholar
  13. 13.
    A. G. Degermendzhi and A. A. Tikhomirov, Herald Russ. Acad. Sci. 84 (2), 124–130 (2014).CrossRefGoogle Scholar
  14. 14.
    Yu. V. Barkhatov, A. A. Tikhomirov, S. A. Ushakova, V. N. Shikhov, S. I. Bartsev, and A. G. Degermendzhi, Dokl. Earth Sci. 471 (1), 1168–1170 (2016).CrossRefGoogle Scholar
  15. 15.
    B. Fry, Stable Isotope Ecology (Springer, New York, 2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. V. Barkhatov
    • 1
    Email author
  • S. A. Ushakova
    • 1
  • V. N. Shikhov
    • 1
  • S. Yu. Evgrafova
    • 2
    • 3
  • A. A. Tikhomirov
    • 1
  • A. G. Degermendzhi
    • 1
  1. 1.Institute of Biophysics, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Sukachev Institute of Forests, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  3. 3.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations