Advertisement

Doklady Earth Sciences

, Volume 483, Issue 1, pp 1451–1453 | Cite as

Formation of Water-Bearing Defects in Olivine in the Presence of Water–Hydrocarbon Fluid at 6.3 GPa and 1200°C

  • A. G. SokolEmail author
  • I. N. Kupriyanov
  • A. A. Tomilenko
  • T. A. Bul’bak
  • Yu. N. Palyanov
  • N. V. Sobolev
GEOCHEMISTRY

Abstract

The main trends of water dissolution in Fe-bearing olivine have been investigated in the olivine–H2O–hydrocarbon fluid system in experiments at a pressure of 6.3 GPa, a temperature of 1200°C, and hydrogen fugacity ( fH2) buffered by the Mo–MoO2 equilibrium. The content and contribution of ОH defects of different types in Fe-bearing olivines depend on the composition of reduced fluids in the system. As the fraction of hydrocarbons in the fluid increases, the H2O content in olivine crystals decreases from 900 to 160–180 ppm, while the ОН absorption peaks become lower at high frequencies and occupy a larger part of the infrared spectrum in the low-frequency region. According to the experimental results, even the deepest seated mantle olivines with OH defects were not equilibrated with a fluid rich in light alkanes or oxygenated hydrocarbons.

Notes

ACKNOWLEDGMENTS

This study was supported by the Russian Science Foundation, project no. 16-17-10041.

REFERENCES

  1. 1.
    J. R. Smyth, D. J. Frost, F. Nestola, C. M. Holl, and G. Bromiley, Geophys. Res. Lett. 33, L15301 (2006). doi 10.1029/2006GL026194CrossRefGoogle Scholar
  2. 2.
    S. Matveev, M. Portnyagin, C. Ballhaus, R. A. Brooker, and C. A. Geiger, J. Petrol. 46, 603–614 (2005).CrossRefGoogle Scholar
  3. 3.
    C. Lemaire, S. C. Kohn, and R. A. Brooker, Contrib. Mineral. Petrol. 147, 48–57 (2004).CrossRefGoogle Scholar
  4. 4.
    A. G. Sokol, I. N. Kupriyanov, and Y. N. Palyanov, Earth Planet. Sci. Lett. 383, 58–67 (2013).CrossRefGoogle Scholar
  5. 5.
    Y.-H. Zhao, S. B. Ginsberg, and D. L. Kohlstedt, Contrib. Mineral. Petrol. 147, 155–161 (2004).CrossRefGoogle Scholar
  6. 6.
    M. Blanchard, J. Ingrin, E. Balan, I. Kovács, and A. C. Withers, Am. Mineral. 102 (2), 302–311 (2017).CrossRefGoogle Scholar
  7. 7.
    V. Stagno, D. O. Ojwang, C. A. McCammon, and D. J. Frost, Nature 493, 84–88 (2013).CrossRefGoogle Scholar
  8. 8.
    K. J. Grant, S. C. Kohn, and R. A. Brooker, Earth Planet. Sci. Lett. 260, 227–241 (2007).CrossRefGoogle Scholar
  9. 9.
    A. C. Withers and M. M. Hirschmann, Contrib. Mineral. Petrol. 156, 595–605 (2008).CrossRefGoogle Scholar
  10. 10.
    A. G. Sokol, Y. N. Palyanov, I. N. Kupriyanov, K. D. Litasov, and M. P. Polovinka, Geochim. Cosmochim. Acta 74, 4793–4806 (2010).CrossRefGoogle Scholar
  11. 11.
    V. S. Sobolev, Geol. Geofiz., No. 1, 7–22 (1960).Google Scholar
  12. 12.
    N. V. Sobolev, The Deep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle (Am. Geophys. Union, Washington, DC, 1977).CrossRefGoogle Scholar
  13. 13.
    A. G. Sokol, A. A. Tomilenko, T. A. Bul’bak, G. A. Palyanova, I. A. Sokol, and Y. N. Palyanov, Sci. Rep. 7 (1), 706 (2017).CrossRefGoogle Scholar
  14. 14.
    N. V. Sobolev, A. V. Sobolev, A. A. Tomilenko, S. V. Kovyazin, V. G. Batanova, and D. V. Kuz’min, Russ. Geol. Geophys. 56 (1–2), 337–360 (2015).Google Scholar
  15. 15.
    L. A. Taylor, A. M. Logvinova, G. H. Howarth, Y. Liu, A. H. Peslier, G. R. Rossman, Y. Guang, Y. Chene, and N. V. Sobolev, Earth Planet. Sci. Lett. 433, 125–132 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. G. Sokol
    • 1
    • 2
    Email author
  • I. N. Kupriyanov
    • 1
    • 2
  • A. A. Tomilenko
    • 1
  • T. A. Bul’bak
    • 1
  • Yu. N. Palyanov
    • 1
    • 2
  • N. V. Sobolev
    • 1
    • 2
  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of SciencesNovosibirsk 90Russia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations