Doklady Earth Sciences

, Volume 483, Issue 1, pp 1384–1387 | Cite as

First Results of Dating Detrital Zircons from Late Precambrian Coarse Clastic Sequences of Ulutau Massif, Central Kazakhstan

  • N. A. KanyginaEmail author
  • E. F. Letnikova
  • K. E. Degtyarev
  • A. A. Tretyakov
  • F. I. Zhimulev
  • A. I. Proshenkin


U–Pb geochronological studies of detrital zircons from the Late Precambrian coarse sequence of the Ulutau massif are studied. The concordant ages of detrital zircons from the Satan Fm. composing the lower part of the Ulutau Series are formed by Neoproterozoic (740–888 Ma) and Paleoproterozoic (1989–2600 Ma) populations with the main peaks at 810 and 840 Ma, while less expressed peaks at 2017, 2036, and 2073 Ma. The concordant ages of detrital zircons from the upper part of the studied series, represented by coarse terrigenous rocks of glacial genesis (Baikonur Fm.), are predominantly within the intervals of 650–708, 721–729, and 754–889 Ma with peaks at 674, 721, 763, 772, 791, 821, and 840 Ma. The data obtained indicate that the lower age limit of coarse rocks from the Ulutau Series is about 670 Ma; these rocks formed mainly due to erosion of Neoproterozoic igneous complexes of the basement, which are widespread in the adjacent Maityube zone, with an insignificant role played by older basement rocks of the Ulutau massif.



This work was supported by the Russian Foundation for Basic Research (project nos. 17–35–50019mol_nr and 18–05–00604), the Russian Science Foundation (project no. 14–27–00058), and State Contract no. 0330-2016-0015.


  1. 1.
    N. V. Dmitrieva, E. F. Letnikova, K. E. Degtyarev, A. A. Trertyakov, and H. Geng, Dokl. Earth Sci. 463 (1), 715–718 (2015).CrossRefGoogle Scholar
  2. 2.
    Yu. A. Zaitsev and T. N. Kheraskova, The Vendian of Central Kazakhstan (Moscow State Univ., Moscow, 1979) [in Russian].Google Scholar
  3. 3.
    I. N. Krylov, V. N. Sergeev, and T. N. Kheraskova, Izv. Akad. Nauk SSSR, Ser. Geol., No. 1, 51–56 (1986).Google Scholar
  4. 4.
    A. A. Tretyakov, K. E. Degtyarev, E. B. Salnikova, K. N. Shatagin, A. B. Kotov, I. V. Anisimova, and Yu. V. Plotkina, Dokl. Earth Sci. 473 (2), 411–415 (2017).CrossRefGoogle Scholar
  5. 5.
    L. I. Filatova, Metamorphic Rocks of Precambrian of Central Kazakhstan: Stratigraphy, Historical and Geological (Formational) Analysis (Nedra, Moscow, 1983) [in Russian].Google Scholar
  6. 6.
    K. Degtyarev, A. Yakubchuk, A. Tretyakov, A. Kotov, and V. Kovach, Gondwana Res. 47, 44–75 (2017).CrossRefGoogle Scholar
  7. 7.
    Y. Liu, S. Gao, Z. Hu, C. Gao, K. Zong, and D. Wang, J. Petrol. 51, 537–571 (2010).CrossRefGoogle Scholar
  8. 8.
    K. R. Ludwig, Isoplot 3.70. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Spec. Publ. No. 4 (Berkeley Geochronol. Center, Berkeley, CA, 2003).Google Scholar
  9. 9.
    X. P. Xia, M. Sun, H. Y. Geng, Y. L. Sun, Y. J. Wang, and G. C. Zhao, J. Anal. At. Spectrom. 26, 1868–1871 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. A. Kanygina
    • 1
    Email author
  • E. F. Letnikova
    • 2
  • K. E. Degtyarev
    • 1
  • A. A. Tretyakov
    • 1
  • F. I. Zhimulev
    • 2
  • A. I. Proshenkin
    • 2
  1. 1.Geological Institute, Russian Academy of Sciences MoscowRussia
  2. 2.Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations