Advertisement

Doklady Earth Sciences

, Volume 483, Issue 1, pp 1427–1430 | Cite as

Experimental Modeling of C0-Forming Processes Involving Cohenite and CO2-Fluid in a Silicate Mantle

  • Yu. V. BatalevaEmail author
  • Yu. N. Palyanov
  • Yu. M. Borzdov
  • O. A. Bayukov
  • N. V. Sobolev
GEOCHEMISTRY
  • 21 Downloads

Abstract

Experimental studies were performed in the Fe3C–SiO2–(Mg,Ca)CO3 system (6.3 GPа, 1100–1500°C, 20–40 h). It is established that the carbide–oxide–carbonate interaction leads to the formation of ferrosilite, fayalite, graphite, and cohenite (1100 and 1200°С), as well as a Fe–C melt (1300°С). It is determined that the main processes in the system are decarbonation, redox-reactions of cohenite and a CO2-fluid, extraction of carbon from carbide, and crystallization of metastable graphite (± diamond growth), as well as the formation of ferriferous silicates. The interaction studied can be considered as a simplified model of the processes that occur during the subduction of oxidized crustal material to reduced mantle rocks.

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project no. 16–35–60024) and was performed as part of a State Assignment (project no. 0330–2016–0007).

REFERENCES

  1. 1.
    A. Rohrbach and M. W. Schmidt, Nature 472, 209–212 (2011).CrossRefGoogle Scholar
  2. 2.
    B. Marty, Earth Planet. Sci. Lett. 313–314, 56–66 (2012).CrossRefGoogle Scholar
  3. 3.
    Y. N. Palyanov, Y. V. Bataleva, Y. M. Borzdov, et al., Proc. Natl. Acad. Sci. U. S. A. 110 (51), 20408–20413 (2013).CrossRefGoogle Scholar
  4. 4.
    D. E. Jacob, A. Kronz, and K. S. Viljoen, Contrib. Mineral. Petrol. 146 (5), 566–576 (2004).CrossRefGoogle Scholar
  5. 5.
    Yu. V. Bataleva, Yu. N. Pal’yanov, Yu. M. Borzdov, et al., Russ. Geol. Geophys. 57 (1), 176–189 (2016).CrossRefGoogle Scholar
  6. 6.
    R. W. Luth, in Reference Module in Earth Systems and Environmental Sciences, Treatise on Geochemistry (Elsevier, 2014), pp. 355–391.Google Scholar
  7. 7.
    I. D. Ryabchikov, Dokl. Earth Sci. 429 (8), 1346–1349 (2009).CrossRefGoogle Scholar
  8. 8.
    L. N. Kogarko, Geochem. Int. 44 (1), 3–10 (2006).CrossRefGoogle Scholar
  9. 9.
    N. V. Sobolev, E. S. Efimova, and L. N. Pospelova, Geol. Geofiz., No. 12, 25–28 (1981).Google Scholar
  10. 10.
    T. Stachel, J. W. Harris, and G. P. Brey, Contrib. Mineral. Petrol. 132, 34–47 (1998).CrossRefGoogle Scholar
  11. 11.
    M. Schrauder and O. Navon, Nature 365, 42–44 (1993).CrossRefGoogle Scholar
  12. 12.
    Y. V. Bataleva, Y. N. Palyanov, Y. M. Borzdov, et al., Lithos 286–287, 151–161 (2017).CrossRefGoogle Scholar
  13. 13.
    Y. N. Palyanov, Y. M. Borzdov, A. F. Khokhryakov, et al., Cryst. Growth Des. 10, 3169–3175 (2010).CrossRefGoogle Scholar
  14. 14.
    Yu. N. Pal’yanov, A. G. Sokol, A. F. Khokhryakov, et al., Dokl. Earth Sci. A 375 (9), 1395–1398 (2000).Google Scholar
  15. 15.
    Y. N. Palyanov, A. F. Khokhryakov, Y. M. Borzdov, et al., Cryst. Growth Des. 13 (12), 5411–5419 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. V. Bataleva
    • 1
    • 2
    Email author
  • Yu. N. Palyanov
    • 1
    • 2
  • Yu. M. Borzdov
    • 1
    • 2
  • O. A. Bayukov
    • 3
  • N. V. Sobolev
    • 1
    • 2
  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences NovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Kirensky Institute of Physics, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia

Personalised recommendations