Advertisement

Doklady Earth Sciences

, Volume 482, Issue 1, pp 1221–1224 | Cite as

Nature of the Decrease in Global Warming at the Beginning of the 21st Century

  • E. M. Volodin
  • A. S. Gritsun
Geophysics
  • 2 Downloads

Abstract

Variations in the temperature of the Earth’s surface over the period 1850–2014 are reproduced and analyzed using seven historical calculations in the INM-CM5 climate model following the scenarios suggested for the CMIP6 project of comparison of climate models. In all calculations, the mean surface temperature increased by 0.8 K to the date of final calculation (2014), which is consistent with observations. The periods of accelerated warming (1920–1940 and 1980–2000) and its stabilization (1950–1975 and 2000–2014) are correctly reproduced by the model. The decrease in global warming of 2000–2014, which is hardly reproduced by the models in the CMIP5 experiment, is reproduced due to the more precise scenario of variation in the solar constant of CMIP6 protocols. The spatial structure of warming for last 30 years is also reproduced by the model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. M. Volodin, N. A. Diansky, and A. V. Gusev, Izv., Atmos. Ocean. Phys. 49 (4), 347–366 (2013).CrossRefGoogle Scholar
  2. 2.
    E. M. Volodin and S. V. Kostrykin, Russ. Meteorol. Hydrol. 41 (8), 519–528 (2016).CrossRefGoogle Scholar
  3. 3.
    N. L. Bindoff, P. A. Stott, K. M. AchutaRao, et al., in Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T.F. Stocker, (Cambridge Univ. Press, Cambridge, 2013), pp. 867–952.Google Scholar
  4. 4.
    R. Checa-Garcia, K. P. Shine, and M. I. Hegglin, Environ. Res. Lett. 11, 094018 (2016).CrossRefGoogle Scholar
  5. 5.
    D. P. Dee, S. M. Uppala, A. J. Simmons, et al., Q. J. R. Meteorol. Soc. 137, 553–597 (2011).CrossRefGoogle Scholar
  6. 6.
    L. Dong and M. J. McPhaden, Environ. Res. Lett 12, 034011 (2017).CrossRefGoogle Scholar
  7. 7.
    G. A. Meehl, J. M. Arblaster, J. T. Fasullo, et al., Nat. Clim. Change 1, 360–364 (2011).CrossRefGoogle Scholar
  8. 8.
    C. P. Morice, J. J. Kennedy, N. A. Rayner, et al., J. Geophys. Res. 117, D08101 (2012).CrossRefGoogle Scholar
  9. 9.
    M. Serreze, A. Barrett, J. Stroeve, et al., Cryosphere 3, 11–19 (2009).CrossRefGoogle Scholar
  10. 10.
    E. M. Volodin, E. V. Mortikov, S. V. Kostrykin, et al., Clim. Dyn. 49, 3715–3734 (2017).CrossRefGoogle Scholar
  11. 11.
    L. J. Wilcox, E. J. Highwood, and N. J. Dunstone, Environ. Res. Lett. 8, 024033 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Marchuk Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations