Advertisement

Doklady Earth Sciences

, Volume 482, Issue 1, pp 1207–1211 | Cite as

Peculiarities of the Composition of Volatiles of Diamonds Synthesized in the Fe–S–C System: Data on Gas Chromatography–Mass Spectrometry

  • A. A. Tomilenko
  • E. I. Zhimulev
  • T. A. Bul’bak
  • V. M. Sonin
  • A. I. Chepurov
  • N. P. Pokhilenko
Geochemistry
  • 16 Downloads

Abstract

The first chromatography–mass spectroscopy data on volatiles in diamonds synthesized in the Fe–S–C system with 5 wt % S at 1400–1450°C and 5.0–5.5 GPa indicate the evolution of volatile composition during the diamond growth and, correspondingly, the variation in redox conditions of the reaction cell. A significant role is played by various hydrocarbons (HCs) and their derivatives, the content of which can reach 87%. Our data on possible abiogenic synthesis of HCs (components of natural gas and oil) can result in global recalculations (including climate) related to the global C cycle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. V. Sobolev, E. S. Efimova, and L. N. Pospelova, Geol. Geofiz., No. 12, 25–29 (1981).Google Scholar
  2. 2.
    H. O. A. Meyer, in Mantle Xenoliths (John Wiley and Sons, Chichester, 1987), pp. 501–533.Google Scholar
  3. 3.
    A. I. Chepurov, Geol. Geofiz., No. 8, 119–124 (1988).Google Scholar
  4. 4.
    G. P. Bulanova, Z. V. Spetsius, and N. V. Leskova, Sulfides in Diamonds and Xenoliths from Yakutian Kimberlite Pipes (Nauka, Novosibirsk, 1990) [in Russian].Google Scholar
  5. 5.
    G. P. Bulanova, W. L. Griffin, and C. G. Ryan, Mineral. Mag. 62, 409–419 (1998).CrossRefGoogle Scholar
  6. 6.
    E. M. Smith, S. B. Shirey, F. Nestola, E. S. Bullock, J. Wang, S. H. Richardson, and W. Wang, Science 354, 1403–1405 (2016).CrossRefGoogle Scholar
  7. 7.
    A. I. Chepurov, I. I. Fedorov, and V. M. Sonin, Geol. Geofiz. 39 (2), 234–244 (1998).Google Scholar
  8. 8.
    E. I. Zhimulev, A. I. Chepurov, E. F. Sinyakova, V.M. Sonin, A. A. Chepurov, and N. P. Pokhilenko, Geochem. Int. 50 (3), 205–216 (2012).CrossRefGoogle Scholar
  9. 9.
    E. I. Zhimulev, V. M. Sonin, A. M. Mironov, and A. I. Chepurov, Geochem. Int. 54 (5), 415–422 (2016).CrossRefGoogle Scholar
  10. 10.
    A. G. Sokol, A. A. Tomilenko, T. A. Bul’bak, G. A. Palyanova, I. A. Sokol, and Y. N. Palyanov, Sci. Rep. 7, 706 (2017). doi 10.1038/s41598-017-00679-7CrossRefGoogle Scholar
  11. 11.
    E. I. Zhimulev, V. M. Sonin, T. A. Bul’bak, A. I. Chepurov, A. A. Tomilenko, and N. P. Pokhilenko, Dokl. Earth Sci. 462 (1), 527–532 (2015).CrossRefGoogle Scholar
  12. 12.
    V. M. Sonin, T. A. Bul’bak, E. I. Zhimulev, A. A. Tomilenko, A. I. Chepurov, and N. P. Pokhilenko, Dokl. Earth Sci. 454 (1), 32–36 (2014).CrossRefGoogle Scholar
  13. 13.
    A. A. Tomilenko, A. I. Chepurov, V. M. Sonin, T. A. Bul’bak, E. I. Zhimulev, A. A. Chepurov, T. Yu. Timina, and N. P. Pokhilenko, High Temp.—High Pressures 44 (6), 1–15 (2015).Google Scholar
  14. 14.
    A. A. Tomilenko, T. A. Bul’bak, M. O. Khomenko, D. V. Kuzmin, and N. V. Sobolev, Dokl. Earth Sci. 468 (2), 626–631 (2016).CrossRefGoogle Scholar
  15. 15.
    K. Heide, K. Gerth, and E. Hartmann, Thermochim. Acta 354, 165–172 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. A. Tomilenko
    • 1
  • E. I. Zhimulev
    • 1
  • T. A. Bul’bak
    • 1
  • V. M. Sonin
    • 1
  • A. I. Chepurov
    • 1
  • N. P. Pokhilenko
    • 1
  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations