Advertisement

Doklady Earth Sciences

, Volume 482, Issue 1, pp 1199–1202 | Cite as

Effect of Silicate Matter on Pyrochlore Solubility in Fluoride Solutions at Т = 550–850°C, Р = 50–100 MPa (Experimental Studies)

  • A. R. Kotelnikov
  • V. S. Korzhinskaya
  • Z. A. Kotelnikova
  • N. I. Suk
  • Yu. B. Shapovalov
Geochemistry
  • 21 Downloads

Abstract

The experimental results of natural pyrochlore behavior in KF solutions in the presence of quartz at 550–850°C and 50–100 MPa are presented. It is shown that silicate matter (quartz) exerts a significant effect on pyrochlore solubility in aqueous solutions of fluorides of alkaline metals under hydrothermal conditions. This study of the fluid inclusions has revealed the occurrence of reactions of high-temperature hydrolysis of KF under the experimental conditions: KF + H2O = KOH + HF; in which case, the interaction with quartz SiO2 + 2KOH = K2SiO3 + H2O is followed by the formation of a silicate glass phase (an aqueous solution–melt). This phase of alkaline glass is a Nb concentrator (Nb2O5 up to 16 wt %). The coefficient of Nb distribution between the glass and the fluid is ≈500 (in favor of the glass). It is determined that the phase of the silicate solution–melt can serve as an effective concentrator of the ore component (Nb) at the last lowtemperature stages of crystallization of rare-metal granites.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Korzhinskaya, Vestn. Otd. Nauk Zemle Ross. Akad. Nauk 3, NZ6042 (2012). doi 102205/2011NZ000172, https://doi.org/onznews.wdcb.ru/publications/v03/asempg11ru/2011NZ000172R.pdf. Google Scholar
  2. 2.
    D. S. Korzhinskii, Theory of Metasomatic Zoning (Nauka, Moscow, 1982) [in Russian].Google Scholar
  3. 3.
    M. Yu. Korotaev and K. G. Kravchuk, Preprint (Chernogolovka, 1985).Google Scholar
  4. 4.
    A. R. Kotelnikov, V. S. Korzhinskaya, Z. A. Kotelnikova, and N. I. Suk, in Proc. All-Russ. Annu. Sem. Experiment. Mineral., Petrol., Geochem. (VESEMPG-2017), Moscow (Moscow, April 18–19, 2017), pp. 124–127.Google Scholar
  5. 5.
    Z. A. Kotelnikova and A. R. Kotelnikov, Dokl. Earth Sci. 459 (2), 1613–1614 (2014).CrossRefGoogle Scholar
  6. 6.
    Z. A. Kotelnikova and A. R. Kotelnikov, in Proc. All-Russ. Annu. Sem. Experiment. Mineral., Petrol., Geochem. (VESEMPG-2017), Moscow (Moscow, April 18–19, 2017), pp. 128–131.Google Scholar
  7. 7.
    A. G. Doroshkevich, V. V. Sharygin, Y. V. Seryotkin, N. S. Karmanov, E. V. Belogub, T. N. Moroz, E. N. Nigmatulina, A. P. Eliseev, V. N. Vedenyapin, and I. N. Kupriyanov, Mineral. Mag. 80, 915–922 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. R. Kotelnikov
    • 1
  • V. S. Korzhinskaya
    • 1
  • Z. A. Kotelnikova
    • 2
  • N. I. Suk
    • 1
  • Yu. B. Shapovalov
    • 1
  1. 1.Institute of Experimental MineralogyRussian Academy of SciencesChernogolovkaRussia
  2. 2.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations