Advertisement

Doklady Earth Sciences

, Volume 481, Issue 2, pp 1050–1055 | Cite as

Exotic Olivine-Mica Rocks from the Udachnaya-East Pipe (Yakutia): Features of the Chemical Composition and Origin

  • L. N. Pokhilenko
Geochemistry
  • 25 Downloads

Abstract

The chemical composition of rock-forming minerals from unusual olivine-mica rocks from the Udachnaya-East kimberlite pipe (Yakutia) was studied. It is shown that all these rocks were formed as a result of the influence of deep metasomatic fluids. Two ilmenite-bearing rocks show the similarity to polymict breccia genetically representing analogs of protokimberlite melts, which did not reach the Earth’s surface. Two other rocks (one with K-bearing amphibole, another with clinopyroxene) are most likely rocks from the zones of high permeability, which were formed upon consolidation of the Siberian Craton and were subjected to the influence of aggressive fluids from the early portions of the protokimberlite melt.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Delaney, J. V. Smith, D. A. Carswell, and J. B. Dawson, Geochim. Cosmochim. Acta 44, 857–872 (1980).CrossRefGoogle Scholar
  2. 2.
    A. J. Erlank, F. G. Water, S. E. Haggerty, and C. J. Hawkesworth, in Proc. 4th Int. Kimberlite Conf. (Perth, 1986), pp. 232–234.Google Scholar
  3. 3.
    N. V. Sobolev, A. M. Logvinova, and E. S. Efimova, Russ. Geol. Geophys. 50 (12), 1234–1248 (2009).CrossRefGoogle Scholar
  4. 4.
    A. Giuliani, D. Phillips, V. S. Kamenetsky, and K. Goemann, Lithos 240–243, 189–201 (2016).CrossRefGoogle Scholar
  5. 5.
    L. N. Pokhilenko, V. P. Afanasiev, and N. P. Pokhilenko, in Proc. 30th Int. Conf. “Ore Potential of Alkaline, Kimberlite and Carbonatite Magmatism” (Akdeniz Univ., Antalya, UCTEA Chamber of Turkish Geological Engineers, Ankara, 2014), pp. 131–134.Google Scholar
  6. 6.
    L. N. Pokhilenko and N. P. Pokhilenko, in Proc. Goldschmidt Conf. (Knoxville, TN, 2010), A822 (2010).Google Scholar
  7. 7.
    L. N. Pokhilenko, T. A. Alifirova, and D. S. Yudin, Dokl. Earth Sci. 449 (1), 309–312 (2013).CrossRefGoogle Scholar
  8. 8.
    N. P. Pokhilenko, Lithos 112S, 934–941 (2009).CrossRefGoogle Scholar
  9. 9.
    P. J. Lawless, J. J. Gurney, and J. B. Dawson, in The Mantle Sample: Inclusions in Kimberlite and Other Volcanics (American Geophys. Union, Washington, DC, 1979).Google Scholar
  10. 10.
    H.-F. Zhang, M. A. Menzies, and D. P. Mattey, Earth Planet. Sci. Lett. 216, 329–346 (2003).CrossRefGoogle Scholar
  11. 11.
    S. I. Kostrovitsky, V. G. Malkovets, E. M. Verichev, et al., Lithos 77, 511–523 (2004).CrossRefGoogle Scholar
  12. 12.
    B. E. Leake, A. R. Woolley, C. E. S. Arps, et al., Mineral. Mag. 61, 295–321 (1997).CrossRefGoogle Scholar
  13. 13.
    L. V. Solov’eva, V. M. Vladimirov, L. V. Dneprovskaya, et al., Kimberlites and Kimberlite-Like Rock Massifs: Matter of Upper Mantle under Ancient Platforms (Nauka, Novosibirsk, 1997) [in Russian].Google Scholar
  14. 14.
    R. H. Mitchell, Kimberlites, Orangeites and Related Rocks (Plenum Press, New York, London, 1995).CrossRefGoogle Scholar
  15. 15.
    E. P. Reguir, A. R. Chakhmouradian, N. M. Halden, et al., Lithos 112S, 372–384 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Sobolev Institute of Geology and Mineralogy, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations