Advertisement

Doklady Earth Sciences

, Volume 480, Issue 2, pp 814–817 | Cite as

New Data on Diamond–Graphite Relationships in the Gneisses of the Kokchetav Massif (Northern Kazakhstan)

  • D. S. Mikhailenko
  • O. V. Shchepetova
  • K. A. Musiyachenko
  • A. V. Korsakov
  • Hiroaki Ohfuji
  • I. V. Pekov
Geochemistry
  • 29 Downloads

Abstract

The results of studying an aggregate of graphite-and-diamond crystal in tourmaline 5 μm of the Kokchetav massif by the method of transmission electron microscopy are presented. The detail studies of the interface between the crystals of graphite and diamond have revealed the absence of disordered graphite that is detail partially graphitized diamond. Intense deformation changes in the graphite crystal occurred after it was captured by tourmaline at the regression stage, which led to considerable kinking of the graphite crystal along the a-axis. Thus, the coexistence of graphite and diamond crystals cannot be unambiguously interpreted as a product of partial diamond graphitization. Graphite could have crystallized syngenetic with a diamond crystal or at the retrograde stage in the graphite stability field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. P. Schertl and N. V. Sobolev, J. Asian Earth Sci. 63, 5–38 (2013).CrossRefGoogle Scholar
  2. 2.
    A. P. Bobrievich, G. I. Smirnov, and V. S. Sobolev, Dokl. Akad. Nauk SSSR 126 (3), 637–640 (1959).Google Scholar
  3. 3.
    D. N. Robinson, in The Mantle Sample: Inclusion in Kimberlites and Other Volcanics (Am. Geophys. Union, Washington, DC, 1979), pp. 50–58.CrossRefGoogle Scholar
  4. 4.
    K. De Corte, A. Korsakov, W. R. Taylor, P. Cartigny, M. Ader, P. De Paepe, Isl. Arc 9 (3), 428–438 (2000).CrossRefGoogle Scholar
  5. 5.
    A. V. Korsakov, E. I. Zhimulev, D. S. Mikhailenko, S. P. Demin, O. A. Kozmenko, Lithos 236, 16–26 (2015).CrossRefGoogle Scholar
  6. 6.
    D. V. Nechaev and A. F. Khokhryakov, Geol. Geofiz. 54 (4), 523–532 (2013).Google Scholar
  7. 7.
    B. Willems, K. De Corte, and G. Van Tendeloo, Phys. Status Solidi A 201 (11), 2486–2491 (2004).CrossRefGoogle Scholar
  8. 8.
    Y. N. Palyanov and A. G. Sokol, Lithos 112, 690–700 (2009).CrossRefGoogle Scholar
  9. 9.
    A. V. Korsakov, M. Perraki, D. A. Zedgenizov, L. Bindi, P. Vandenabeele, A. Suzuki, and H. Kagi, J. Petrol. 51 (3), 763–783(2010).CrossRefGoogle Scholar
  10. 10.
    D. S. Mikhailenko, A. V. Korsakov, P. S. Zelenovskiy, and A. V. Golovin, Am. Mineral. 101 (10), 2155–2167 (2016).CrossRefGoogle Scholar
  11. 11.
    N. V. Sobolev and V. S. Shatsky, Nature 343 (6260), 742–746 (1990).CrossRefGoogle Scholar
  12. 12.
    V. S. Shatsky, N. V. Sobolev, and M. A. Vavilov, Ultrahigh Pressure Metamorphism (Cambridge Univ. Press, Cambridge, 1995), pp. 427–455.CrossRefGoogle Scholar
  13. 13.
    M. L. Frezzotti, J. M. Huizenga, R. Compagnoni, J. Selverstone, Geochim. Cosmochim. Acta 143, 68–86 (2014).CrossRefGoogle Scholar
  14. 14.
    J. Xu, Y. Kuang, B. Zhang, Y. Liu, D. Fan, X. Li, and H. Xie, Phys. Chem. Miner. 43 (5), 315–326 (2016).CrossRefGoogle Scholar
  15. 15.
    S. Lowitzer, B. Winkler, and M. Tucker, Phys. Rev. B 73 (21), 214115 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. S. Mikhailenko
    • 1
  • O. V. Shchepetova
    • 1
  • K. A. Musiyachenko
    • 1
  • A. V. Korsakov
    • 1
  • Hiroaki Ohfuji
    • 2
  • I. V. Pekov
    • 3
  1. 1.Sobolev Institute of Geology and MineralogyRussian Academy of SciencesNovosibirskRussia
  2. 2.Geodynamics Research CenterEhime UniversityMatsuyama, EhimeJapan
  3. 3.Moscow State UniversityMoscowRussia

Personalised recommendations