Advertisement

Doklady Earth Sciences

, Volume 480, Issue 2, pp 778–782 | Cite as

Andradite–Morimotoite Garnets as Promising U–Pb Geochronometers for Dating Ultrabasic Alkaline Rocks

  • E. B. SalnikovaEmail author
  • M. V. Stifeeva
  • A. V. Nikiforov
  • V. V. Yarmolyuk
  • A. B. Kotov
  • I. V. Anisimova
  • A. M. Sugorakova
  • V. V. Vrublevskii
Geochemistry

Abstract

U–Pb geochronological studies of garnet of the andradite–morimotoite series and Sm–Nd geochronological studies of this garnet and apatite from the Chikskii Massif (Tuva-Mongolia microcontinent) were carried out. The garnet studied is characterized by relatively high concentrations of U (14–16 ppm) and by a low level of common Pb (Pbс/Pbt = 0.07–0.1). The concordia age of garnet is 492 ± 2 Ma (MSWD = 0.01, probability 92%) and matches within the error with the Sm–Nd age determined by the isochrone for apatite, garnet, and bulk rock (489 ± 9 Ma, MSWD = 0.86). This allows us to consider calcic garnets of the andradite–morimotoite series as promising mineral geochronometers for U–Pb dating of ultrabasic alkaline rocks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. T. Barrie, Can. J. Earth Sci. 27, 1451–1456 (1990).CrossRefGoogle Scholar
  2. 2.
    R. M. Yashina, Alkaline Magmatism of Folded-Block Regions (by the Example of Southern Margins of Siberian Platform) (Nauka, Moscow, 1982) [in Russian].Google Scholar
  3. 3.
    C. P. DeWolf, C. J. Zeissler, A. N. Halliday, K. Mezger, and E. J. Essene, Geochim. Cosmochim. Acta 60, 121–134 (1996).CrossRefGoogle Scholar
  4. 4.
    T. E. Krogh, Geochim. Cosmochim. Acta 37, 485–494 (1973).CrossRefGoogle Scholar
  5. 5.
    E. P. Horwitz, M. L. Dietz, R. Chiarizia, H. Diamond, A. M. Essling, and D. Graczyk, Anal. Chim. Acta 266, 25–37 (1992).CrossRefGoogle Scholar
  6. 6.
    F. Corfu and T. B. Andersen, Int. J. Earth Sci. (Geol. Rundsch.) 91, 955–963 (2002).CrossRefGoogle Scholar
  7. 7.
    K. R. Ludwig, U.S. Geological Survey Open-File Rep. No. 88–542 (1991).Google Scholar
  8. 8.
    K. R. Ludwig, A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronological Center Special Publication No. 5 (Berkeley Geochronol. Center, Berkeley, CA, 2012).Google Scholar
  9. 9.
    R. H. Steiger and E. Jager, Earth Planet. Sci. Lett. 36 (2), 359–362 (1976).Google Scholar
  10. 10.
    J. S. Stacey and I. D. Kramers, Earth Planet. Sci. Lett. 26 (2), 207–221 (1975).CrossRefGoogle Scholar
  11. 11.
    A. Z. Zhuravlev, D. Z. Zhuravlev, Yu. A. Kostitsyn, and I. V. Chernyshev, Geokhimiya, No. 8, 1115–1129 (1987).Google Scholar
  12. 12.
    V. A. Kononova, Izv. Akad. Nauk SSSR, Ser. Geol., No. 5, 37–55 (1957).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. B. Salnikova
    • 1
    Email author
  • M. V. Stifeeva
    • 1
  • A. V. Nikiforov
    • 2
  • V. V. Yarmolyuk
    • 2
  • A. B. Kotov
    • 1
  • I. V. Anisimova
    • 1
  • A. M. Sugorakova
    • 3
  • V. V. Vrublevskii
    • 4
  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia
  3. 3.Tuva Institute for Complex Exploration of Natural Resources, Siberian BranchRussian Academy of SciencesKyzylRussia
  4. 4.National Research Tomsk State UniversityTomskRussia

Personalised recommendations