Doklady Earth Sciences

, Volume 479, Issue 2, pp 456–459 | Cite as

Hydrogen and Carbon Groups in the Structures of Rock-Forming Minerals of Rocks of the Lithospheric Mantle: FTIR and STA + QMS Data

  • M. S. Babushkina
  • V. L. Ugolkov
  • Yu. B. Marin
  • L. P. Nikitina
  • A. G. Goncharov


Using IR–Fourier spectrometry (FTIR) and simultaneous thermal analysis combined with quadrupole mass spectrometry of thermal decomposition products (STA + QMS), olivines and clinopyroxene from xenolites of spinel and garnet lherzolites contained in kimberlites and alkaline basalts were studied to confirm the occurrence of hydrogen and carbon within the structure of the minerals, as well as to specify the forms of H and C. The presence of hydroxyl ions (OH–) and molecules of crystal hydrate water (H2Ocryst) along with CO2, CH, CH2, and CH3 groups was detected, which remained within the structures of mantle minerals up to 1300°C (by the data of both techniques). The total water (OH–and H2Ocryst) was the prevailing component of the C–O–H system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. S. Babushkina, L. P. Nikitina, A. G. Goncharov, and N. I. Ponomareva, Geol. Ore Deposits 51 (8), 712–722 (2009).CrossRefGoogle Scholar
  2. 2.
    S. Demouchy and N. Bolfan-Casanova, Lithos 240, 402–425 (2015). doi 10.1016/j.lithos.2015.11.012Google Scholar
  3. 3.
    L. S. Doucet, A. H. Peslier, D. A. Ionov, A. D. Brandon, A. V. Golovin, A. G. Goncharov, and I. V. Ashchepkov, Geochim. Cosmochim. Acta 137, 159–187 (2014). doi 10.1016/j.gca.2014.04.011CrossRefGoogle Scholar
  4. 4.
    A. Férot and N. Bolfan-Casanova, Earth Planet. Sci. Lett. 349–350, 218–230 (2012).CrossRefGoogle Scholar
  5. 5.
    F. Freund, Phys. Chem. Miner. 13, 262–276 (1986).CrossRefGoogle Scholar
  6. 6.
    A. G. Goncharov, L. P. Nikitina, N. V. Borovkov, M. S. Babushkina, and A. N. Sirotkin, Russ. Geol. Geophys. 56, 1578–1602 (2015).CrossRefGoogle Scholar
  7. 7.
    K. Grant, J. Ingrin, J. P. Lorand, and P. Dumas, Contrib. Mineral. Petrol. 154, 15–34 (2007).CrossRefGoogle Scholar
  8. 8.
    S. S. Shcheka, M. Wiedenbeck, D. J. Frost, and H. Keppler, Earth Planet. Sci. Lett. 245, 730–742 (2006).CrossRefGoogle Scholar
  9. 9.
    M. Freund and F. Freund, Astrophys. J. 639, 210–226 (2006).CrossRefGoogle Scholar
  10. 10.
    F. T. Freund and M. M. Freund, Am. J. Anal. Chem. 6, 342–349 (2015).CrossRefGoogle Scholar
  11. 11.
    J. L. Mosenfelder and G. R. Rossman, Am. Mineral. 98, 1026–1041 (2013a).CrossRefGoogle Scholar
  12. 12.
    J. L. Mosenfelder and G. R. Rossman, Am. Mineral. 98, 1042–1054 (2013b).CrossRefGoogle Scholar
  13. 13.
    E. Balan, M.·Blanchard, M. Lazzeri, ·and J. Ingrin, Phys. Chem. Miner. 41, 105–114 (2014).CrossRefGoogle Scholar
  14. 14.
    M. S. Babushkina, L. P. Nikitina, and A. G. Goncharov, in Proc. 12th All-Russ. Petrol. Conf. (Karelian Sci. Center Russ. Acad. Sci., Petrozavodsk, 2015), pp. 56–59 [in Russian].Google Scholar
  15. 15.
    A. V. Sobolev, E. V. Asafov, A. A. Gurenko, N. T. Arndt, V. G. Batanova, M. V. Portnyagin, D. Garbe-Schonberg, and S. P. Krasheninnikov, Nature 531, 31–42 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. S. Babushkina
    • 1
  • V. L. Ugolkov
    • 2
  • Yu. B. Marin
    • 3
  • L. P. Nikitina
    • 1
    • 4
  • A. G. Goncharov
    • 1
    • 4
  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg Mining UniversitySt. PetersburgRussia
  4. 4.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations