Doklady Earth Sciences

, Volume 477, Issue 2, pp 1467–1469 | Cite as

Human footprints on greenhouse gas fluxes in cryogenic ecosystems

  • D. V. Karelin
  • S. V. Goryachkin
  • D. G. Zamolodchikov
  • A. V. Dolgikh
  • E. P. Zazovskaya
  • V. A. Shishkov
  • G. N. Kraev
Geography

Abstract

Various human footprints on the flux of biogenic greenhouse gases from permafrost-affected soils in Arctic and boreal domains in Russia are considered. Tendencies of significant growth or suppression of soil CO2 fluxes change across types of human impact. Overall, the human impacts increase the mean value and variance of local soil CO2 flux. Human footprint on methane exchange between soil and atmosphere is mediated by drainage. However, all the types of human impact suppress the sources and increase sinks of methane to the land ecosystems. N2O flux grew under the considered types of human impact. Based on the results, we suggest that human footprint on soil greenhouse gases fluxes is comparable to the effect of climate change at an annual to decadal timescales.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Glagolev, I. E. Kleptsova, I. V. Filippov, V. S. Kazantsev, and Sh. Sh. Maksutov, Vestn. Tomsk. Gos. Pedagog. Univ. 3 (93), 78–86 (2010).Google Scholar
  2. 2.
    D. G. Zamolodchikov, Biol. Bull. Rev. 6 (1), 24–38 (2016). doi 10.1134/S2079086416010096CrossRefGoogle Scholar
  3. 3.
    D. V. Karelin and D. G. Zamolodchikov, Carbon Exchange in Cryogenic Ecosystems (Nauka, Moscow, 2008) [in Russian].Google Scholar
  4. 4.
    D. V. Karelin, D. G. Zamolodchikov, N. V. Zukert, et al., Biol. Bull. Rev. 3 (5), 371–387 (2013). doi 10.1134/S2079086413050058CrossRefGoogle Scholar
  5. 5.
    Q. Chen, R. Zhu, Q. Wang, et al., J. Environ. Sci. 26, 1403–1410 (2014). doi 10.1016/j.jes.2014.05.005CrossRefGoogle Scholar
  6. 6.
    A. Petrescu, A. Lohila, J.-P. Tuovinen, et al., Proc. Natl. Acad. Sci. U. S. A. 112 (15), 4594–4599 (2015). doi 10.1073/pnas.1416267112CrossRefGoogle Scholar
  7. 7.
    S. Stark, M. K. Mannisto, L. Ganzert, et al., Soil Biol. Biochem. 84, 147–157 (2015). doi 10.1016/j.soilbio. 2015.02.023CrossRefGoogle Scholar
  8. 8.
    C. Tarnocai, J. G. Canadell, E. A. G. Schuur, et al., Global Biogeochem. Cycles 23 (11) (2009). doi 10.1029/2008GB003327Google Scholar
  9. 9.
    K. M. Walter, M. E. Edwards, G. Grosse, S. A. Zimov, F. S. Chapin III, Science 318 (5850), 633–635 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. V. Karelin
    • 1
    • 2
    • 3
  • S. V. Goryachkin
    • 2
  • D. G. Zamolodchikov
    • 1
    • 3
  • A. V. Dolgikh
    • 2
  • E. P. Zazovskaya
    • 2
  • V. A. Shishkov
    • 2
  • G. N. Kraev
    • 3
  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of GeographyRussian Academy of SciencesMoscowRussia
  3. 3.Center of Forest Ecology and ProductivityRussian Academy of SciencesMoscowRussia

Personalised recommendations