Doklady Earth Sciences

, Volume 476, Issue 2, pp 1203–1206 | Cite as

Subpolar mode water classes in the northeast Atlantic: Interannual and long-term variability

  • S. V. Gladyshev
  • V. S. Gladyshev
  • S. K. Gulev
  • A. V. Sokov
Oceanology

Abstract

We distinguish the classes of Subpolar Mode Waters (SPMWs), calculate their long-term characteristics, and analyze their interannual and long-term variability based on data from the transatlantic section along 59.5° N measured in 2002–2016. The branches of the North Atlantic Current are horizontal boundaries of the SPMW classes. Modern cooling and freshening of SPMW cores are revealed due to the increased winter atmospheric circulation over the North Atlantic and decline of the Arctic ice cover. In 2010–2016, the potential temperature of the SPMW core in the Iceland Basin dropped by 2.12°C, while its salinity decreased by 0.23 psu.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. K. Gulev, M. Latif, and N. Keenlyside, Nature 499, 464–467 (2013). doi 10.1038/nature12268CrossRefGoogle Scholar
  2. 2.
    E. Brambilla and L. D. Talley, J. Geophys. Res. 113, C04025 (2008). doi 10.1029/2006JC004062Google Scholar
  3. 3.
    E. Brambilla and L. D. Talley, J. Geophys. Res. 113, C04026 (2008). doi 10.1029/2006JC004063Google Scholar
  4. 4.
    I. V. Polyakov, A. Beszczynska, and E. C. Carmack, Geophys. Res. Lett. 32, L17605 (2005). doi 10.1029/2005GL023740CrossRefGoogle Scholar
  5. 5.
    I. Yashayaev and D. Seidov, Prog. Oceanogr. 132, 68–127 (2015). doi org/l0.1016/j.pocean.2014.11.009CrossRefGoogle Scholar
  6. 6.
    B. Rudels, E. Fahrbach, and J. Meincke, ICES J. Mar. Sci. 59, 1133–1154 (2002). doi 10.1006/jmsc.2002.1284CrossRefGoogle Scholar
  7. 7.
    L. D. Talley and M. S. McCartney, J. Phys. Oceanogr. 12 (11), 1189–1205 (1982).CrossRefGoogle Scholar
  8. 8.
    S. V. Gladyshev, V. S. Gladyshev, A. S. Falina, and A. A. Sarafanov, Oceanology (Engl. Transl.) 56 (3), 326–335 (2016). doi 10.1134/S0001437016030073Google Scholar
  9. 9.
    S. V. Gladyshev, V. S. Gladyshev, S. K. Gulev, and A. V. Sokov, Dokl. Earth Sci. 469 (1), 766–770 (2016). doi 10.1134/S1028334X16070229CrossRefGoogle Scholar
  10. 10.
    R. Curry and C. Mauritzen, Science 308, 1772–1774 (2005). doi 10.1126/science.1109477CrossRefGoogle Scholar
  11. 11.
    N. P. Holliday, S. L. Hughes, and S. Bacon, Geophys. Res. Lett. 35, L03614 (2008). doi 10.1029/2007GL032675CrossRefGoogle Scholar
  12. 12.
    N. P. Holliday, S. A. Cunningham, and C. Johnson, J. Geophys. Res. 120, 5945–5967 (2015). doi 10.1002/2015JC010762CrossRefGoogle Scholar
  13. 13.
    D. J. Cavalieri and C. L. Parkinson, Cryosphere 6, 881–889 (2012). doi 10.5194/tc-6-881-2012CrossRefGoogle Scholar
  14. 14.
    J. C. Stroeve, M. C. Serreze, and M. M. Holland, Clim. Change 110, 1005–1027 (2012). doi 10.1007/s10584-011-0101-1CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. V. Gladyshev
    • 1
  • V. S. Gladyshev
    • 1
  • S. K. Gulev
    • 1
  • A. V. Sokov
    • 1
  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations