Doklady Earth Sciences

, Volume 476, Issue 1, pp 986–991 | Cite as

Sources of fluids and material for gold and antimony mineralization in the Adychanskii ore region (East Yakutia, Russia)

  • V. V. Aristov
  • S. G. Kryaghev
  • O. B. Ryzhov
  • A. A. Volfson
  • V. Yu. Prokofiev
  • N. V. Sidorova
  • A. A. Sidorov
Geology
  • 36 Downloads

Abstract

The peculiarities of fluid inclusions; the O and C isotope composition of host rocks, vein minerals, and inclusions; and the S and Pb isotope composition of sulfides allowed us to distinguish two groups of fluids with a similar temperature, salinity, and source of the aqueous part produced upon metagenesis and mobilized during collisional events. Quartz-A precipitates from the CO2–H2O hydrocarbonate–Na fluid with a salinity of 7–10 wt % eq. NaCl at a depth of ∼6 km (290–340°C, 1550 bar). Regeneration of quartz (quartz-C), precipitation of quartz-B, and quartz-AB with carbonate and chlorite occurred at a depth from 3.5 to 1.5 km (250–380°C, 1250–900–350 bar) from CO2–CH4–N hydrous sulfate–hydrocarbonate Na–Mg fluids with Cl, Ca, and K and a salinity of 5–10 wt % eq. NaCl, and a wide variety of impurities. The localization of veins in sinistral shear dislocations and strong heterogeneity in the PT conditions allow us to explain the formation of fluid-2 by the postcollisional events.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. I. Berger, Antimonic Deposits (Nedra, Leningrad, 1978) [in Russian].Google Scholar
  2. 2.
    N. S. Bortnikov, G. N. Gamyanin, O. V. Vikent’eva, et al., Geol. Ore Deposits 52 (5), 339–372 (2010).CrossRefGoogle Scholar
  3. 3.
    D. N. Zadorozhnyi, O. B. Ryzhov, V. V. Aristov, et al., Rudy Met., No. 2, 11–18 (2011).Google Scholar
  4. 4.
    S. G. Kryazhev and V. V. Aristov, in Proc. 13th Int. Conference on Thermobaric Geochemistry and 4th Symposium APIFIS (Inst. Geol. Ore Deposits, Petrogr., Miner., Geochem. Russ. Acad. Sci., Moscow, 2008), Vol. 2, pp. 249–252.Google Scholar
  5. 5.
    A. V. Volkov, V. Yu. Prokof’ev, A. A. Ali, and A. A. Sidorov, Dokl. Earth Sci. 458 (1), 1063–1066 (2014).CrossRefGoogle Scholar
  6. 6.
    S. G. Kryazhev, V. Yu. Prokofiev, and Yu. V. Vasyuta, Vestn. Mosk. Univ., Ser. 4: Geol., No. 4, 30–36 (2006).Google Scholar
  7. 7.
    R. J. Bakker, Chem. Geol. 194, 323 (2003).CrossRefGoogle Scholar
  8. 8.
    E. Roedder, Fluid Inclusions, Vol. 12 of Reviews in Mineralogy (Min. Soc. of America, Washington, DC, 1984).Google Scholar
  9. 9.
    V. A. Kalyuzhnyi, Foundations of Doctrine on Mineral-Forming Fluids (Naukova Dumka, Kiev, 1982) [in Russian].Google Scholar
  10. 10.
    S. V. Voroshin, E. E. Tyukova, and V. A. Chinenov, Kolyma, No. 2, 58–65 (2000).Google Scholar
  11. 11.
    J. S. Stacey and J. D. Kramers, Earth Planet. Sci. Lett. 26, 207–221 (1975).CrossRefGoogle Scholar
  12. 12.
    The Pb Isotopes and Problems on Ore-Genesis. Scientific Works of Karpinsky Russian Geological Research Institute (Nedra, Leningrad, 1988), Vol. 342 [in Russian].Google Scholar
  13. 13.
    A. A. Makhnach, Katagenesis and Underground Waters (Nauka i Tekhnika, Minsk, 1989) [in Russian].Google Scholar
  14. 14.
    V. V. Aristov, I. I. Babarina, A. V. Grigor’eva, et al., Geol. Ore Deposits 59 (1), 68–102 (2017).CrossRefGoogle Scholar
  15. 15.
    A. A. Sidorov and A. V. Volkov, Herald Russ. Acad. Sci. 86 (1), 19–23 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. V. Aristov
    • 1
  • S. G. Kryaghev
    • 2
  • O. B. Ryzhov
    • 2
  • A. A. Volfson
    • 1
  • V. Yu. Prokofiev
    • 1
  • N. V. Sidorova
    • 1
  • A. A. Sidorov
    • 1
  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy, and GeochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Central Geological Research Institute for Nonferrous and Precious MetalsMoscowRussia

Personalised recommendations