Advertisement

Doklady Earth Sciences

, Volume 475, Issue 1, pp 818–821 | Cite as

Factors of 18O/16O fractionation in garnets: Evidence from calculations of isotope frequency shifts

  • D. P. Krylov
  • V. A. Glebovitsky
Geochemistry

Abstract

Based on the density functional theory (DFT), frequency shifts of garnet end-members upon isotope substitutions (18O/16O, as well as “non-traditional” stable isotopes) were calculated. According to the calculations, the temperature dependencies of fractionation factors (β-factors) suggested for garnets: 1000lnβprp = 9.68511x–0.19204x 2 + 0.00567x 3; 1000lnβgrs = 9.14697x–0.15682x 2 + 0.00412x 3; 1000lnβadr = 8.72470x–0.15092x 2 + 0.00402x 3; 1000lnβuvr = 8.71526x–0.14749x 2 + 0.00385x 3; 1000lnβsps = 9.33600x–0.17598x 2 + 0.00499x 3; 1000lnβalm = 9.45295x–0.18465x 2 + 0.00539x 3, x = 106/T (K)2. The values obtained combined with with the known values of β-factors may be applied in geothermometry of garnet-bearing rocks.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Lichtenstein and S. Hoernes, Eur. J. Mineral. 4 (2), 239–249 (1992).CrossRefGoogle Scholar
  2. 2.
    J. M. Rosenbaum and D. Mattey, Geochim. Cosmochim. Acta 59 (13), 2839–2842 (1995).CrossRefGoogle Scholar
  3. 3.
    Y.-F. Zheng, Geochim. Cosmochim. Acta 57 (13), 1079–1091 (1993).CrossRefGoogle Scholar
  4. 4.
    J. Horita and R. N. Clayton, Geochim. Cosmochim. Acta 71 (12), 3131–3135 (2007).CrossRefGoogle Scholar
  5. 5.
    S. W. Kieffer, Rev. Geophys. 20 (4), 827–849 (1982).CrossRefGoogle Scholar
  6. 6.
    R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa, L. Maschio, M. Ferrabone, M. De La Pierre, P. D’Arco, Y. Noël, M. Causà, M. Rérat and B. Kirtman, Int. J. Quantum Chem. 114 (19), 1287–1317 (2014).CrossRefGoogle Scholar
  7. 7.
    R. Dovesi, M. De La Pierre, A. M. Ferrari, F. Pascale, L. Maschio, and C. M. Zicovich-Wilson, Am. Mineral. 96 (11–12), 1787–1798 (2011).CrossRefGoogle Scholar
  8. 8.
    A. M. Ferrari, L. Valenzano, A. Meyer, R. Orlando, and R. Dovesi, J. Phys. Chem. 113 (22), 11289–11294 (2009).CrossRefGoogle Scholar
  9. 9.
    A. Erba, A. Mahmoud, R. Orlando, and R. Dovesi, Phys. Chem. Miner. 41 (2), 151–160 (2014).CrossRefGoogle Scholar
  10. 10.
    V. Lacivita, A. Erba, R. Orlando, and R. Dovesi, Phys. Chem. Chem. Phys. 16 (29), 15331–15338 (2014).CrossRefGoogle Scholar
  11. 11.
    A. Meyer, Ph. D'Arco, R. Orlando, and R. Dovesi, J. Phys. Chem. 113 (32), 14507–14511 (2009).Google Scholar
  12. 12.
    M. Blanchard, F. Poitrasson, M. Méheut, M. Lazzeri, F. Mauri, and E. Balan, Geochim. Cosmochim. Acta 73 (21), 6565–6578 (2009).CrossRefGoogle Scholar
  13. 13.
    Y. Bottinga and M. Javoy, Rev. Geophys. 13 (2), 401–418 (1975).CrossRefGoogle Scholar
  14. 14.
    T. Chacko, D. R. Cole, and J. Horita, Rev. Mineral. Geochem. 43 (1), 1–81 (2001).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Precambrian Geology and GeochronologyRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of the Earth SciencesSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations