Advertisement

Doklady Earth Sciences

, Volume 473, Issue 2, pp 441–443 | Cite as

Local distribution of oxygen isotopes and fluid exchange during genesis of the corundum-bearing rocks of Khitostrov Island

  • D. P. Krylov
  • V. A. Glebovitsky
Geochemistry
  • 31 Downloads

Abstract

New data are presented on the distribution of oxygen isotopes and conditions of the local isotope equilibrium in high-Al rocks rocks of Khitostrov Island showing abnormally low δ18O values (below–25‰). The temperatures of isotope equilibrium are within 400–475°C. The minimum δ18O values have been registered in the in plagioclase, whereas the same phases in kyanite-bearing rocks lacking corundum demonstrate δ18O values usually 3–5‰ higher. The fluid δ18O value varies from–22 to–16‰ at 475 ± 15°C, from–18 to–23‰ at 425 ± 25°C, and from–17 to–22‰ at 380 ± 15°C. The results obtained do not require abnormal depletion of δ18O values owing to the infiltration of an external fluid under the Svecofennian transformations. The association of corundum-bearing rocks with the basic intrusions, the presence of zircon cores of older ages compared to these rocks, and the peculiarities of rock chemistry may be ascribed to the fact that lower crustal layers of ancient rocks depleted in δ18O before metamorphism were captured by basite melts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Herwartz, A. Pack, D. P. Krylov, et al., Proc. Natl. Acad. Sci. U.S.A. 112 (17), 5337–5341 (2015).CrossRefGoogle Scholar
  2. 2.
    D. P. Krylov, in Proc. 12th Int. Symp. on Water-Rock Interaction WRI-12, Kunming, 2007, Ed. by T. D. Bullen and Y. Wang (Taylor and Francis, London, 2007), pp. 87–89.Google Scholar
  3. 3.
    D. P. Krylov, Dokl. Earth Sci. A 419 (3), 453–456 (2008).CrossRefGoogle Scholar
  4. 4.
    D. P. Krylov, E. B. Sal’nikova, A. M. Fedoseenko, et al., Petrology 19 (1), 79–86 (2011).CrossRefGoogle Scholar
  5. 5.
    M. Javoy, J. Geol. Soc. (London, U. K.) 133 (6), 609–636 (1977).CrossRefGoogle Scholar
  6. 6.
    P. Agrinier, Chem. Geol. 91 (1), 49–64 (1991).CrossRefGoogle Scholar
  7. 7.
    A. Tennie, R. Hoffbauer, and S. Hoernes, Contrib. Mineral. Petrol. 133 (4), 346–355 (1998).CrossRefGoogle Scholar
  8. 8.
    T. Chacko, X. Hu, T. K. Mayeda, et al., Geochim. Cosmochim. Acta 60 (14), 2595–2608 (1996).CrossRefGoogle Scholar
  9. 9.
    R. Hoffbauer, S. Hoernes, and E. Fiorentini, Precambrian Res. 66 (1–4), 199–220 (1994).CrossRefGoogle Scholar
  10. 10.
    M. J. Kohn and J. W. Valley, Geochim. Cosmochim. Acta 62 (11), 1947–1958 (1998).CrossRefGoogle Scholar
  11. 11.
    E. V. Bibikova, S. V. Bogdanova, V. A. Glebovitsky, et al., Petrology 12 (3), 195–210 (2004).Google Scholar
  12. 12.
    I. N. Bindeman, A. K. Schmitt, and D. A. D. Evans, Geology 38 (7), 631–634 (2010).CrossRefGoogle Scholar
  13. 13.
    E. V. Sharkov, V. F. Smolkin, and I. S. Krassivskaya, Petrology 5 (5), 448–465 (1997).Google Scholar
  14. 14.
    D. P. Krylov and V. A. Glebovitsky, Dokl. Earth Sci. 412 (2), 210–212 (2007).CrossRefGoogle Scholar
  15. 15.
    G. V. Young, V. Von Brunn, J. C. Gold, et al., J. Geol. 106 (5), 523–538 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.Institute of Precambrian GeologyRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations