Doklady Earth Sciences

, Volume 466, Issue 2, pp 153–156 | Cite as

A mathematical model of the global processes of plastic degradation in the World Ocean with account for the surface temperature distribution

  • S. I. Bartsev
  • J. I. Gitelson


The suggested model of plastic garbage degradation allows us to obtain an estimate of the stationary density of their distribution over the surface of the World Ocean with account for the temperature dependence on the degradation rate. The model also allows us to estimate the characteristic time periods of degradation of plastic garbage and the dynamics of the mean density variation as the mean rate of plastic garbage entry into the ocean varies


DOKLADY Earth Science World Ocean PHBV Degra Dation Polyhydroxybutyrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Eriksen, L. C. M. Lebreton, H. S. Carson, M. Thiel, C. J. Moore, et al., PLoS ONE 9 (12), e111913 (2014). doi 10.1371/journalpone.0111913CrossRefGoogle Scholar
  2. 2.
    J. R. Jambeck, R. Geyer, C. Wilcox, T. R. Siegler, M. Perryman, A. Andrady, R. Narayan, and K. L. Law, Science 347 6223, 768–771 (2015).CrossRefGoogle Scholar
  3. 3.
    R. Jayasekara, I. Harding, I. Bowater, and G. Lonergan, J. Polym. Environ. 13 3, 231–251 (2005).CrossRefGoogle Scholar
  4. 4.
    S. Lambert, C. Sinclair, and A. Boxall, Rev. Environ. Contam. Toxicol. 227, 1–53 (2014).Google Scholar
  5. 5.
    B.-I. Sang, K. Hori, Y. Tanji, and H. Unno, Biochem. Eng. J. 9, 175–184 (2001).CrossRefGoogle Scholar
  6. 6.
    C. X. F. Lam, M. M. Savalani, S.-H. Teoh, and D. W. Hutmacher, Biomed. Mater. 3, 15 (2008).CrossRefGoogle Scholar
  7. 7.
    T. Leejarkpai, U. Suwanmanee, Y. Rudeekit, and T. Mungcharoen, Waste Manage. 31, 1153–1161 (2011).CrossRefGoogle Scholar
  8. 8.
    G. B. Ardisson, M. Tosin, M. Barbale, and F. DegliInnocenti, Front. Microbiol. 5, 710 (2014).Google Scholar
  9. 9.
    Y. Wang, J. Pan, X. Han, C. Sinka, and L. Ding, Biomaterials 29, 3393–3401 (2008).CrossRefGoogle Scholar
  10. 10.
    Y. Chen, S. Zhou, and Q. Li, Acta Biomater. 7, 1140–1149 (2011).CrossRefGoogle Scholar
  11. 11.
    X. Han and J. Pan, Acta Biomater. 7, 538–547 (2011).CrossRefGoogle Scholar
  12. 12.
    S. K. Schmidt, S. Simkins, and M. Alexander, Appl. Environ. Microbiol. 50 2, 323–331 (1985).Google Scholar
  13. 13.
    http://apdrcsoesthawaiiedu/projects/argo/Google Scholar
  14. 14.
    WOA13 5 Degree Annual Temperature Statistical Mean. https://wwwnodcnoaagov/cgi-bin/OC5/woa13/Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Institute of Biophysics, Siberian BranchRussian Academy of SciencesAkademgorodok, KrasnoyarskRussia

Personalised recommendations