Doklady Earth Sciences

, Volume 458, Issue 1, pp 1143–1148 | Cite as

Numerical diagnosis of tropical cyclogenesis based on a hypothesis of helical self-organization of moist convective atmospheric turbulence

Geophysics

Abstract

A novel diagnosis for tropical cyclogenesis is presented by examining helical self-organization of moist convective atmospheric turbulence in a rotating, non-homogeneous atmosphere. Our original research approach employed near-cloud-resolving numerical simulations, which allows quantitative diagnosis of cyclogenesis when the primary and secondary circulations in a forming hurricane vortex become linked by deep rotating cumulonimbus cores—Vortical Hot Towers (VHTs). It is shown here how the generated linkage makes the nascent vortex an integral helical system and allows a positive energetic feedback between the circulations that, with adequate moisture fluxes from the underlying sea surface to maintain convective instability, provides a self-sustaining amplification process on the system-scale circulation. The performed investigation suggests that diagnoses using helicity may not only provide an answer to the important question of when will cyclogenesis commence, given a favorable tropical environment, but will help develop a universally accepted definition of tropical cyclogenesis that does not yet exist.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Riehl and J. S. Malkus, Geophysica 6, 503–538 (1958).Google Scholar
  2. 2.
    E. A. Hendricks, M. T. Montgomery, and C. A. Davis, J. Atmos. Sci. 61, 1209–1232 (2004).CrossRefGoogle Scholar
  3. 3.
    M. T. Montgomery, M. E. Nicholls, T. A. Cram, and A. B. Saunders, J. Atmos. Sci. 63, 355–386 (2006).CrossRefGoogle Scholar
  4. 4.
    G. V. Levina, Preprint NI13001-TOD (Isaac Newton Institute for Mathematical Sciences, Preprint Series, Cambridge, UK, 2013).Google Scholar
  5. 5.
    A. O. Fierro, J. Simpson, M. A. LeMone, J. M. Straka, and B. F. Smull, J. Atmos. Sci. 66, 2730–2746 (2009).CrossRefGoogle Scholar
  6. 6.
    J. Molinari and D. Vollaro, J. Atmos. Sci. 67, 274–284 (2010).CrossRefGoogle Scholar
  7. 7.
    M. T. Montgomery and R. K. Smith, Report for the Seventh International Workshop on Tropical Cyclones, La Reunion, Nov. 2010, World Meteorological Organization, Geneva, Switzerland, 2010.Google Scholar
  8. 8.
    G. V. Levina and M. T. Montgomery, Doklady Earth Sciences 434(1), 1285–1289 (2010).CrossRefGoogle Scholar
  9. 9.
    H. K. Moffatt, J. Fluid Mech. 35, 117–129 (1969).CrossRefGoogle Scholar
  10. 10.
    U. Frisch, Turbulence: The Legacy of A.N. Kolmogorov (Cambridge University Press, Cambridge, 1995).Google Scholar
  11. 11.
    H. K. Moffatt and A. Tsinober, Annu. Rev. Fluid Mech. 24, 281–312 (1992).CrossRefGoogle Scholar
  12. 12.
    G. V. Levina and M. T. Montgomery, J. Phys.: Conf. Ser. 318, 072012 (2011). doi: 10.1088/1742-6596/318/7/072012Google Scholar
  13. 13.
    S. S. Moiseev, R. Z. Sagdeev, A. V. Tur, G. A. Khomenko, and A. M. Shukurov, Soviet Physics Doklady 28, 925–928 (1983).Google Scholar
  14. 14.
    M. T. Montgomery, S. V. Nguyen, R. K. Smith, and J. Persing, Q. J. Roy. Meteorol. Soc. 135, 1697–1714 (2009).CrossRefGoogle Scholar
  15. 15.
    T. J. Dunkerton, M. T. Montgomery, and Z. Wang, Atmos. Chem. Phys. 9, 5587–5646 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Institute of Continuous Media Mechanics UB RASPermRussia
  2. 2.Space Research Institute RASMoscowRussia
  3. 3.Naval Postgraduate SchoolMontereyUSA

Personalised recommendations