Advertisement

Doklady Earth Sciences

, Volume 454, Issue 1, pp 44–46 | Cite as

Primary production and fluxes of organic carbon to the seabed in the Eurasian arctic seas, 2003–2012

  • A. A. VetrovEmail author
  • E. A. Romankevich
Oceanology

Abstract

The primary production and fluxes of organic matter to the seabed and their variations were estimated in the Greenland, Barents, Kara, Laptev, East Siberian, and Chukchi seas in 2003–2012 on the basis of satellite and in situ data. When counting the open water area with the assumptions made for the assessment of the primary production in the sea areas hidden under clouds, an increase in primary production was recorded in all these seas, the total production (phytoplankton and ice algae) has grown from 250 × 106 to 400 × 106 t of C per year over the last ten years. The calculation of the OM flux to the seabed showed growth for certain seas from 4 to 12% per year.

Keywords

Phytoplankton DOKLADY Earth Science Open Water Area Advance Microwave Scan Radiometer Microwave Scan Radiometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. R. Arrigo and G. L. van Dijken, J. Geophys. Res. Oceans 116 (2011).Google Scholar
  2. 2.
    O. S. Pokrovsky, J. Viers, B. Dupre, et al., Comptes Rendus Geoscience 344, 663–677 (2012).CrossRefGoogle Scholar
  3. 3.
    A. A. Vetrov and E. A. Romanevich, Okeanologiya 51(2), 266–277 (2011).Google Scholar
  4. 4.
    M. E. Vinogradov, V. I. Vedernikov, E. A. Romankevich, and A. A. Vetrov, Okeanologiya 40(2), 221–233 (2000).Google Scholar
  5. 5.
    A. A. Vetrov, E. A. Romankevich, and N. A. Belyaev, Geokhimiya, No. 10, 1122–1130 (2008).Google Scholar
  6. 6.
    C. Deal, M. Jin, S. Elliott, et al., J. Geophys. Res. Oceans 116(Iss. C7) (2011).Google Scholar
  7. 7.
    M. Gosselin, M. Levasseur, P. A. Wheeler, et al., Deep-Sea Res. II 44(8), 1623–1644 (1997).CrossRefGoogle Scholar
  8. 8.
    R. Gradinger, Deep Sea Res. Pt. II 56(17), 1201–1212 (2009).CrossRefGoogle Scholar
  9. 9.
    V. B. Tseitlin, Okeanologiya 33(2), 224–228 (1993).Google Scholar
  10. 10.
    S. Pabi, G. L. van Dijken, and K. R. Arrigo, J. Geophys. Res. 113, C08005 (2008).Google Scholar
  11. 11.
    E. E. Popova, A. Yool, A. C. Coward, et al., Biogeosciences 7, 3569–3591 (2010).CrossRefGoogle Scholar
  12. 12.
    A. A. Vetrov and E. A. Romankevich, Carbon Cycle in the Russian Arctic Seas. B.: Springer (2004).CrossRefGoogle Scholar
  13. 13.
    A. Wagner, G. Lohmann, and M. Prange, Global and Planet. Change 79, 48–60 (2011).CrossRefGoogle Scholar
  14. 14.
    J. Hansen, R. Ruedy, M. Sato, and K. Lo, http://data.giss.nasa.gov/gistemp/2011/

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia

Personalised recommendations