Advertisement

Doklady Earth Sciences

, Volume 444, Issue 1, pp 630–633 | Cite as

The influence of atmospheric circulation on the dynamics of the intermediate water layer in the eastern part of the St. Anna Trough

  • S. A. Kirillov
  • I. A. Dmitrenko
  • V. V. Ivanov
  • E. O. Aksenov
  • M. S. Makhotin
  • B. A. de Quevas
Oceanology

Abstract

This paper discusses the results of unique direct observations over the current velocities in the eastern part of the St. Anna deep-water trough, made in the period from August 2009 until September 2010, and analyzes the physical ways how the temporal variability of currents is formed. The stable northward barotropic transport with an average annual velocity of about 20 cm/s was discovered. It was found that changes in velocity with a characteristic timescale of several weeks occurred synchronously in the entire water column and were determined by the deformation of the sea level field due to long-period disturbances of the large-scale field of ground wind above the northern parts of Barents and Kara seas. For the winds of the southwest and west directions, the sea level’s gradient is formed across the St. Anna Trough and the northward meridional water transport is intensified owing to the geostrophic adjustment. These are verified by the results of numerical simulation.

Keywords

Current Velocity DOKLADY Earth Science Arctic Basin Southwest Wind Anna Trough 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. G. Nikiforov and A. O. Shpaikher, Regularities of Large-Scale Variations in the Hydrological Regime of the Arctic Ocean (Gidrometeoizdat, Leningrad, 1980) [in Russian].Google Scholar
  2. 2.
    V. R. Fuks, Introduction to the Theory of Wave Motion in Ocean (Leningrad State Univ., Leningrad, 1982) [in Russian].Google Scholar
  3. 3.
    Y. Aksenov, S. Bacon, A. Coward, and A. J. G. Nurser, J. Mar. Syst. 79(1–2), 1–22 (2010).CrossRefGoogle Scholar
  4. 4.
    Y. Aksenov, V. V. Ivanov, A. J. G. Nurser, et al., J. Geophys Res. 116, C09017 (2011).CrossRefGoogle Scholar
  5. 5.
    I. A. Dmitrenko, S. A. Kirillov, V. V. Ivanov, and R. A. Woodgate, J. Geophys Res. 113, C07005 (2008).CrossRefGoogle Scholar
  6. 6.
    R. Gerdes and U. Schauer, J. Geophys Res. 102(C4), 8467–8483 (1997).CrossRefGoogle Scholar
  7. 7.
    D. Hanzlick and K. Aagaard, J. Geophys Res. 85, 4937–4942 (1980).CrossRefGoogle Scholar
  8. 8.
    M. Karcher, F. Kauker, R. Gerdes, et al., J. Geophys Res. 112, C004S02 (2007).CrossRefGoogle Scholar
  9. 9.
    W. G. Large and S. G. Yeager, NCAR Technical Note NCAR/TN-460, 2004.Google Scholar
  10. 10.
    G. Madec and NEMO Team, NEMO Ocean Engine (Inst. Pierre Simone Laplace, 2008).Google Scholar
  11. 11.
    P. M. Ponte and P. Gasper, J. Geophys Res. 104(C7), 15587–15601 (1999).CrossRefGoogle Scholar
  12. 12.
    B. Rudels, E. P. Jones, U. Schauer, and P. Eriksson, Polar Res. 22 181–208 (2004).CrossRefGoogle Scholar
  13. 13.
    U. Schauer, B. Rudels, E. P. Jones, et al., Ann. Geophys. 20, 257–273 (2002)CrossRefGoogle Scholar
  14. 14.
    T. J. Weingartner, D. J. Cavalieri, K. Aagaard, and Y. Sasaki, J. Geophys Res. 103, 7647–7662 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. A. Kirillov
    • 1
    • 3
  • I. A. Dmitrenko
    • 2
    • 3
  • V. V. Ivanov
    • 1
    • 3
  • E. O. Aksenov
    • 2
    • 3
  • M. S. Makhotin
    • 1
    • 3
  • B. A. de Quevas
    • 2
    • 3
  1. 1.Arctic and Antarctic Research InstituteSt. PetersburgRussia
  2. 2.Leibniz Institute of Marine SciencesChristian-Albrechts University of KielKielGermany
  3. 3.National Oceanography Centre, SouthhamptonUniversity of SouthhamptonSouthhamptonUK

Personalised recommendations