Doklady Earth Sciences

, Volume 430, Issue 1, pp 67–70 | Cite as

Directionality of surface high-frequency geoacoustic emission during deformational disturbances

  • B. M. Shevtsov
  • Yu. V. Marapulets
  • A. O. Shcherbina
Oceanology

Abstract

Changes in the directionality of surface high-frequency geoacoustic emission during periods of deformational disturbances on the diurnal time scale prior to strong seismic events on Kamchatka have been investigated. It has been shown that while the emission intensity grows by over an order of magnitude, sharp maxima appear in the direction of longitudinal acoustic oscillations. Based on their position, the orientation of the major compression axis can be determined, whose chaotic motion exhibits two metastable states around the direction to the epicenter of the earthquake.

Keywords

Acoustic Emission Chaotic Motion Directional Pattern Azimuthal Distribution Directional Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Kuptsov, I. A. Larionov, and B. M. Shevtsov, Vulkanol. Seismol., No. 4, 1–14 (2005).Google Scholar
  2. 2.
    A. V. Kuptsov, Fiz. Zemli, No. 10, 59–65 (2005).Google Scholar
  3. 3.
    G. I. Dolgikh, A. V. Kuptsov, I. A. Larionov, et al., Dokl. Akad. Nauk 413, 96–100 (2007) [Dokl. Earth Sci. 413, 281 (2007)].Google Scholar
  4. 4.
    I. P. Dobrovol’skii, S. I. Zubkov, and V. I. Myachkin, Modeling of Earthquake Processes (Nauka, Moscow, 1980), pp. 7–44 [in Russian].Google Scholar
  5. 5.
    A. S. Alekseev, A. S. Belonosov, and V. E. Petrenko, Vychisl. Seismologiya, No. 32, 81–97 (2001).Google Scholar
  6. 6.
    A. S. Perezhogin, B. M. Shevtsov, R. N. Sagitova, et al., Mat. Model. 19(11), 59–64 (2007).Google Scholar
  7. 7.
    S. D. Vinogradov, in Researches in the Earthquake Physics (Nauka, Moscow, 1976), pp. 67–74 [in Russian].Google Scholar
  8. 8.
    S. D. Vinogradov, K. I. Kuznetsova, A. G. Moskvina, et al., Physical Processes in the Sources of Earthquakes (Nauka, Moscow, 1980), pp. 129–140 [in Russian].Google Scholar
  9. 9.
    V. A. Gordienko, Vector-Phase Methods in Acoustics (Fizmatlit, Moscow, 2007) [in Russian].Google Scholar
  10. 10.
    V. A. Gordienko, T. V. Gordienko, A. V. Kuptsov, et al., Dokl. Akad. Nauk 407, 669–672 (2006) [Dokl. Earth Sci. 407A, 474 (2006)].Google Scholar
  11. 11.
    V. A. Gordienko, T. V. Gordienko, N. V. Krasnopistsev, et al., Akust. Zh. 54, 97–109 (2008) [Acoust. Phys. 54, 82 (2008)].Google Scholar
  12. 12.
    G. I. Anosov, S. K. Bikkenina, A. A. Popov, et al., Deep Seismic Sounding on Kamchatka (Nauka, Moscow, 1978) [in Russian].Google Scholar
  13. 13.
    L. B. Slavina, in Researches in the Earthquake Physics (Nauka, Moscow, 1976), pp. 217–236 [in Russian].Google Scholar
  14. 14.
    C. S. Clay and H. Medwin, Fundamentals of Acoustical Oceanography (Academic, Boston, 1998; Mir, Moscow, 1980).Google Scholar
  15. 15.
    Yu. V. Marapulets and A. O. Shcherbina, Tekhn. Akust. 14 (2008), http://www.ejta.org.

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • B. M. Shevtsov
    • 1
  • Yu. V. Marapulets
    • 1
  • A. O. Shcherbina
    • 1
  1. 1.Institute of Cosmophysical Research and Radio Wave Propagation, Far East DivisionRussian Academy of SciencesParatunka, KamchatkaRussia

Personalised recommendations