Skip to main content
Log in

CoPt–Al2O3 Nanocomposite Films: Synthesis, Structure, and Magnetic Properties

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The structure and magnetic properties of CoPt–Al2O3 nanocomposite films synthesized by the annealing of Al/(Co3O4 + Pt) bilayers on a MgO(001) substrate at 650°C in vacuum are investigated. The synthesized composite films contain ferromagnetic CoPt grains with an average size of 25–45 nm enclosed in a nonconducting Al2O3 matrix. The saturation magnetization (Ms ~ 330 G) and coercivity (Hc ≈ 6 kOe) of the films are measured in the film plane and perpendicular to it. The obtained films are characterized by a spatial rotational magnetic anisotropy, which makes it possible to arbitrarily set the easy magnetization axis in the film plane or perpendicular to it using a magnetic field stronger than the coercivity (H > Hc).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. C.-W. Nan, MRS Bull. 40, 719 (2015). https://doi.org/10.1557/mrs.2015.196

    Article  Google Scholar 

  2. O. A. Fouad, S. A. Makhlouf, G. A. M. Ali, and A. Y. El-Sayed, Mater. Chem. Phys. 128, 70 (2011). https://doi.org/10.1016/j.matchemphys.2011.02.072

    Article  CAS  Google Scholar 

  3. A. K. Rathore, S. P. Pati, M. Ghosh, et al., J. Mater. Sci.: Mater. Electron. 28, 6950 (2017). https://doi.org/10.1007/s10854-017-6395-7

    Article  CAS  Google Scholar 

  4. J. Xu, H. Yang, W. Fu, et al., J. Alloys Compd. 458, 119 (2008). https://doi.org/10.1016/j.jallcom.2007.03.149

    Article  CAS  Google Scholar 

  5. G.-R. Xu, J.-J. Shi, W.-H. Dong, et al., J. Alloys Compd. 630, 266 (2015). https://doi.org/10.1016/j.jallcom.2015.01.067

    Article  CAS  Google Scholar 

  6. E. B. Dokukin, R. V. Erhan, A. Kh. Islamov, et al., Phys. Status Solidi B 250, 1656 (2013). https://doi.org/10.1002/pssb.201248379

    Article  CAS  Google Scholar 

  7. R. Goyal, S. Lamba, and S. Annapoorni, Phys. Status Solidi A 213, 1309 (2016). https://doi.org/10.1002/pssa.201532704

    Article  CAS  Google Scholar 

  8. S. P. Pati, B. Bhushan, and D. Das, J. Solid State Chem. 183, 2903 (2010). https://doi.org/10.1016/j.jssc.2010.09.037

    Article  CAS  Google Scholar 

  9. N. R. Panda, S. P. Pati, A. Das, and D. Das, Appl. Surf. Sci. 449, 654 (2018). https://doi.org/10.1016/j.apsusc.2017.12.003

    Article  CAS  Google Scholar 

  10. B. Gokul, P. Saravanan, V. T. P. Vinod, et al., Powder Technol. 274, 98 (2015). https://doi.org/10.1016/j.powtec.2015.01.002

    Article  CAS  Google Scholar 

  11. Y. Cao, N. Kobayashi, Y.-W. Zhang, et al., J. Appl. Phys. 122, 133903 (2017). https://doi.org/10.1063/1.5005620

    Article  CAS  Google Scholar 

  12. V. G. Myagkov, I. A. Tambasov, O. A. Bayukov, et al., J. Alloys Compd. 612, 189 (2014). https://doi.org/10.1016/j.jallcom.2014.05.176

    Article  CAS  Google Scholar 

  13. L. E. Bykova, V. S. Zhigalov, V. G. Myagkov, et al., Phys. Solid State 60, 2028 (2018). https://doi.org/10.21883/FTT.2018.10.46535.087

    Article  Google Scholar 

  14. V. G. Myagkov, L. E. Bykova, V. S. Zhigalov, et al., J. Alloys Compd. 724, 820 (2017). https://doi.org/10.1016/j.jallcom.2017.07.081

    Article  CAS  Google Scholar 

  15. M. N. Volochaev, S. V. Komogortsev, V. G. Myagkov, et al., Phys. Solid State 60, 1409 (2018). https://doi.org/10.21883/FTT.2018.07.46132.025

    Article  Google Scholar 

  16. V. G. Myagkov, L. E. Bykova, O. A. Bayukov, et al., J. Alloys Compd. 636, 223 (2015). https://doi.org/10.1016/j.jallcom.2015.02.012

    Article  CAS  Google Scholar 

  17. V. G. Myagkov, V. S. Zhigalov, L. E. Bykova, et al., J. Alloys Compd. 665, 197 (2016). https://doi.org/10.1016/j.jallcom.2015.12.257

    Article  CAS  Google Scholar 

  18. Z. G. Qiu, D. C. Zeng, L. Z. Zhao, et al., Phys. B (Amsterdam, Neth.) 500, 111 (2016). https://doi.org/10.1016/j.physb.2016.07.029

    Article  CAS  Google Scholar 

  19. J. J. Lin, Z. Y. Pan, S. Karamat, et al., J. Phys. D: Appl. Phys. 41, 095001 (2008). https://doi.org/10.1088/0022-3727/41/9/095001

    Article  CAS  Google Scholar 

  20. T. Shiroyama. B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, and K. Hono, AIP Adv. 6, 105105 (2016). https://doi.org/10.1063/1.4964930

    Article  CAS  Google Scholar 

  21. W. B. Cui, B. Varaprasad, Y. K. Takahashi, et al., Solid State Commun. 182, 17 (2014). https://doi.org/10.1016/j.ssc.2013.11.010

    Article  CAS  Google Scholar 

  22. Y. Yu, J. Shi, and Y. Nakamura, J. Appl. Phys. 109, 07C1031 (2011). https://doi.org/10.1063/1.3536789

  23. R. Tang, W. Zhang, and Y. Li, J. Magn. Magn. Mater. 322, 3490 (2010). https://doi.org/10.1016/j.jmmm.2010.06.051

    Article  CAS  Google Scholar 

  24. R. Tang, W. Zhang, and Y. Li, J. Alloys Compd. 496, 380 (2010). https://doi.org/10.1016/j.jallcom.2010.02.018

    Article  CAS  Google Scholar 

  25. C. W. White, S. P. Withrow, J. D. Budai, et al., J. Appl. Phys. 98, 114311 (2005). https://doi.org/10.1063/1.2138801

    Article  CAS  Google Scholar 

  26. V. G. Myagkov, V. S. Zhigalov, L. E. Bykova, et al., JETP Lett. 102, 393 (2015). https://doi.org/10.7868/S0370274X15180071

    Article  Google Scholar 

  27. V. G. Myagkov, L. E. Bykova, V. S. Zhigalov, et al., J. Alloys Compd. 706, 447 (2017). https://doi.org/10.1016/j.jallcom.2017.02.261

    Article  CAS  Google Scholar 

  28. V. G. Myagkov, V. S. Zhigalov, L. E. Bykova, et al., Phys. Status Solidi B 249, 1541 (2012). https://doi.org/10.1002/pssb.201248064

    Article  CAS  Google Scholar 

  29. V. G. Myagkov, L. E. Bykova, V. Yu. Yakovchuk, et al., JETP Lett. 105, 610 (2017). https://doi.org/10.7868/S0370274X1710006X

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank D.A. Velikanov for measuring the hysteresis loops of the samples and G.N. Bondarenko for carrying out the X-ray structural experiments. Electron microscopy investigations of the sample surface and cross section were carried out using equipment of the Center of Collective Use of the Krasnoyarsk Scientific Center, Siberian Branch, Russian Academy of Sciences.

Funding

This study was supported by the Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Regional Fund of Science to the research projects no. 18-42-243009 r_mol_a and no. 19-43-240003 r_a, and the Foundation for Assistance to Small Innovative Enterprises in Science and Technology, contract no. 11843GU/2017, code 0033636, U.M.N.I.K. competition.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. S. Zhigalov or L. E. Bykova.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhigalov, V.S., Bykova, L.E., Myagkov, V.G. et al. CoPt–Al2O3 Nanocomposite Films: Synthesis, Structure, and Magnetic Properties. J. Surf. Investig. 14, 47–53 (2020). https://doi.org/10.1134/S102745102001022X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745102001022X

Keywords:

Navigation